Recent advances on microplastics/nanoplastics interaction with plant species: A concise review

  • Nurfarwizah Adzuan Hafiz EMZI Nanoparticles Colloids & Interface Industrial Research Laboratory (EMZI NANO-CORE) and Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA (UiTM) Cawangan Pulau Pinang, Kampus Permatang Pauh, 13500 Permatang Pauh, Pulau Pinang, Malaysia
  • Nurin Nabilah Jalaudin Basha EMZI Nanoparticles Colloids & Interface Industrial Research Laboratory (EMZI NANO-CORE) and Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA (UiTM) Cawangan Pulau Pinang, Kampus Permatang Pauh, 13500 Permatang Pauh, Pulau Pinang, Malaysia
  • Mohamed Syazwan Osman, Ir. Ts EMZI Nanoparticles Colloids & Interface Industrial Research Laboratory (EMZI NANO-CORE) and Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA (UiTM) Cawangan Pulau Pinang, Kampus Permatang Pauh, 13500 Permatang Pauh, Pulau Pinang, Malaysia

Abstract

The transmission, toxicity, and removal of micro/nanoplastics (MPs/NPs) have been the subject of extensive attention and have impacted concerns globally. The inclusion of microplastic pollution can have a plethora of effects on plant growth, depending on the composition of the planting media. Following a recent year of research focusing mostly on aquatic systems, attention has begun shifted to the consequences of microplastic on plant cells. Therefore, there is a significant knowledge gap regarding the extent to which MPs have an impact on terrestrial environments, particularly agroecosystems, and the risks that this has for human health. Within this review, the interaction of MPs/NPs to plant species is due to the abundance of microplastics in soil following human activity. This review also summarised the routes of MPs/NPs to the plant through the root and shoot of the plant. Subsequently, the emergence of MPs/NPs influences and brings implications on plant growth, growth, and crop production according to each plant species. Besides, the recommendations for further research on the phytotoxic effects of MPs on plants, the method of uptake and translocation in plant tissues, detection techniques for MPs in plants, and, most importantly, the potential for future interactions and accumulation of MPs in plants have also been discussed thoroughly in this paper. The most recent developments in this area are summarised at the end, with an emphasis on the future directions for studying microplastics in terrestrial systems.

References

Alqahtani, S., Alqahtani, S., Saquib, Q., & Mohiddin, F. (2023). Toxicological impact of microplastics and nanoplastics on humans: understanding the mechanistic aspect of the interaction. Frontiers in Toxicology, 5, 1193386. https://doi.org/10.3389/FTOX.2023.1193386
Amrutha, K., Unnikrishnan, V., Shajikumar, S., & Warrier, A. K. (2021). Current state of microplastics research in SAARC countries—A Review. In S.S. Muthu (Eds.). Microplastic pollution. sustainable textiles: production, processing, manufacturing & chemistry (pp. 27–63). Springer, Singapore https://doi.org/10.1007/978-981-16-0297-9_2
Ardusso, M., Forero-López, A. D., Buzzi, N. S., Spetter, C. v., & Fernández-Severini, M. D. (2021). COVID-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of South America. Science of the Total Environment, 763, 144365 https://doi.org/10.1016/j.scitotenv.2020.144365
Awet, T. T., Kohl, Y., Meier, F., Straskraba, S., Grün, A.-L., Ruf, T., Jost, C., Drexel, R., Tunc, E., & Emmerling, C. (2018). Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environmental Sciences Europe, 30(1), 11. https://doi.org/10.1186/s12302-018-0140-6
Azeem, I., Adeel, M., Ahmad, M. A., Shakoor, N., Jiangcuo, G. D., Azeem, K., Ishfaq, M., Shakoor, A., Ayaz, M., Xu, M., & Rui, Y. (2021). Uptake and accumulation of nano/microplastics in plants: A critical review. Nanomaterials (Basel), 11(11), 2935. https://doi.org/10.3390/nano11112935
Azeem, I., Adeel, M., Ahmad, M. A., Shakoor, N., Zain, M., Yousef, N., Yinghai, Z., Azeem, K., Zhou, P., White, J. C., Ming, X., & Rui, Y. (2022). Microplastic and nanoplastic interactions with plant species: Trends. Environmental Science and Technology Letters, 9(6), 482–492. https://doi.org/10.1021/acs.estlett.2c00107
Bhagat, J., Nishimura, N., & Shimada, Y. (2021). Toxicological interactions of microplastics/nanoplastics and environmental contaminants: Current knowledge and future perspectives. Journal of Hazardous Materials, 405, 123913 https://doi.org/10.1016/j.jhazmat.2020.123913
Bläsing, M., & Amelung, W. (2018). Plastics in soil: Analytical methods and possible sources. Science of the Total Environment, 612, 422–435. https://doi.org/10.1016/j.scitotenv.2017.08.086
Boots, B., Russell, C. W., & Green, D. S. (2019). Effects of Microplastics in soil ecosystems: Above and below ground. Environmental Science and Technology, 53(19), 11496–11506. https://doi.org/10.1021/acs.est.9b03304
Bosker, T., Bouwman, L. J., Brun, N. R., Behrens, P., & Vijver, M. G. (2019). Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere, 226, 774–781. https://doi.org/10.1016/j.chemosphere.2019.03.163
Campos, E. V. R., Pereira, A. E. S., de Oliveira, J. L., Carvalho, L. B., Guilger-Casagrande, M., de Lima, R., & Fraceto, L. F. (2020). How can nanotechnology help to combat COVID-19? Opportunities and urgent need. In Journal of Nanobiotechnology, 18(1), 125. https://doi.org/10.1186/s12951-020-00685-4
Chadha, A., Florentine, S. K., Chauhan, B. S., Long, B., & Jayasundera, M. (2019). Influence of soil moisture regimes on growth, photosynthetic capacity, leaf biochemistry and reproductive capabilities of the invasive agronomic weed; Lactuca serriola. PLOS ONE, 14(6), e0218191. https://doi.org/10.1371/journal.pone.0218191
Chae, Y., & An, Y. J. (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental Pollution, 240, 387–395). https://doi.org/10.1016/j.envpol.2018.05.008
Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry and Engineering, 8(9), 3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635
Chen, W., Chen, Y., Siddique, K. HM., & Li, S. (2022). Root penetration ability and plant growth in agroecosystems. Plant Physiology and Biochemistry, 183, 160–168. https://doi.org/10.1016/j.plaphy.2022.04.024
de Souza Machado, A. A., Lau, C. W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., Becker, R., Görlich, A. S., & Rillig, M. C. (2019). Microplastics can change soil properties and affect plant performance. Environmental Science and Technology, 53(10), 6044–6052. https://doi.org/10.1021/acs.est.9b01339
de Souza MacHado, A. A., Lau, C. W., Till, J., Kloas, W., Lehmann, A., Becker, R., & Rillig, M. C. (2018). Impacts of microplastics on the soil biophysical environment. Environmental Science and Technology, 52(17), 9656–9665. https://doi.org/10.1021/acs.est.8b02212
Füzy, A., Kovács, R., Cseresnyés, I., Parádi, I., Szili-Kovács, T., Kelemen, B., Rajkai, K., & Takács, T. (2019). Selection of plant physiological parameters to detect stress effects in pot experiments using principal component analysis. Acta Physiologiae Plantarum, 41(5), 56. https://doi.org/10.1007/s11738-019-2842-9
Ge, J., Li, H., Liu, P., Zhang, Z., Ouyang, Z., & Guo, X. (2021a). Review of the toxic effect of microplastics on terrestrial and aquatic plants. Science of the Total Environment, 791, 148333. https://doi.org/10.1016/j.scitotenv.2021.148333
Ge, J., Li, H., Liu, P., Zhang, Z., Ouyang, Z., & Guo, X. (2021b). Review of the toxic effect of microplastics on terrestrial and aquatic plants. Science of the Total Environment, 791, 148333. https://doi.org/10.1016/j.scitotenv.2021.148333
Gigault, J., Halle, A. ter, Baudrimont, M., Pascal, P. Y., Gauffre, F., Phi, T. L., el Hadri, H., Grassl, B., & Reynaud, S. (2018). Current opinion: What is a nanoplastic? Environmental Pollution, 235, 1030–1034. https://doi.org/10.1016/j.envpol.2018.01.024
Gonçalves, J. M., & Bebianno, M. J. (2021). Nanoplastics impact on marine biota: A review. Environmental Pollution, 273, 116426. https://doi.org/10.1016/j.envpol.2021.116426
Hashmi, M. Z., & Strezov, V. (2022). Emerging Contaminants and Associated Treatment Technologies Series Editors. http://www.springer.com/series/16185
He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC - Trends in Analytical Chemistry, 109, 163–172. https://doi.org/10.1016/j.trac.2018.10.006
Hollóczki, O., & Gehrke, S. (2020). Can Nanoplastics Alter Cell Membranes? ChemPhysChem, 21(1), 9–12. https://doi.org/10.1002/CPHC.201900481
Irfan, M., Qadir, A., Mumtaz, M., & Ahmad, S. R. (2020). An unintended challenge of microplastic pollution in the urban surface water system of Lahore, Pakistan. Environmental Science and Pollution Research, 27(14), 16718–16730. https://doi.org/10.1007/s11356-020-08114-7
Jha, S. (2018). Plant-nanoparticles (NP) interactions—A Review: Insights into developmental, physiological, and molecular aspects of NP phytotoxicity. Sustainable Biological Systems for Agriculture, 83–120. https://doi.org/10.1201/9781315165264-4
Jiang, Y., Zhao, Y., Wang, X., Yang, F., Chen, M., & Wang, J. (2020). Characterization of microplastics in the surface seawater of the South Yellow Sea as affected by season. Science of the Total Environment, 724. https://doi.org/10.1016/j.scitotenv.2020.138375
Kalčíková, G., Žgajnar Gotvajn, A., Kladnik, A., & Jemec, A. (2017). Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor. Environmental Pollution, 230, 1108–1115. https://doi.org/10.1016/j.envpol.2017.07.050
Karami, A., Golieskardi, A., Choo, C. K., Larat, V., Karbalaei, S., & Salamatinia, B. (2018). Microplastic and mesoplastic contamination in canned sardines and sprats. Science of The Total Environment, 612, 1380–1386. https://doi.org/10.1016/j.scitotenv.2017.09.005
Karthik, R., Robin, R. S., Purvaja, R., Ganguly, D., Anandavelu, I., Raghuraman, R., Hariharan, G., Ramakrishna, A., & Ramesh, R. (2018). Microplastics along the beaches of southeast coast of India. Science of The Total Environment, 645, 1388–1399. https://doi.org/10.1016/j.scitotenv.2018.07.242
Kim, S. W., Waldman, W. R., Kim, T. Y., & Rillig, M. C. (2020). Effects of different microplastics on nematodes in the soil environment: Tracking the extractable additives using an ecotoxicological approach. Environmental Science and Technology, 54(21), 13868–13878. https://doi.org/10.1021/acs.est.0c04641
Lai, H., Liu, X., & Qu, M. (2022). Nanoplastics and human health: Hazard identification and biointerface. Nanomaterials, 12(8), 1298. https://doi.org/10.3390/NANO12081298
Lehmann, A., Leifheit, E. F., Feng, L., Bergmann, J., Wulf, A., & Rillig, M. C. (2022). Microplastic fiber and drought effects on plants and soil are only slightly modified by Arbuscular Mycorrhizal fungi. Soil Ecology Letters, 4(1), 32–44. https://doi.org/10.1007/s42832-020-0060-4
Li, L., Luo, Y., Li, R., Zhou, Q., Peijnenburg, W. J. G. M., Yin, N., Yang, J., Tu, C., & Zhang, Y. (2020). Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability, 3(11), 929–937. https://doi.org/10.1038/s41893-020-0567-9
Lian, J., Wu, J., Xiong, H., Zeb, A., Yang, T., Su, X., Su, L., & Liu, W. (2020). Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). Journal of Hazardous Materials, 385, 121620. https://doi.org/10.1016/j.jhazmat.2019.121620
Lozano, Y. M., & Rillig, M. C. (2020). Effects of microplastic fibers and drought on plant communities. Environmental Science and Technology, 54(10), 6166–6173. https://doi.org/10.1021/acs.est.0c01051
Mason, S. A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., Fink, P., Papazissimos, D., & Rogers, D. L. (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environmental Pollution, 218, 1045–1054. https://doi.org/10.1016/j.envpol.2016.08.056
Mateos-Cárdenas, A., O’Halloran, J., van Pelt, F. N. A. M., & Jansen, M. A. K. (2021). Beyond plastic microbeads – Short-term feeding of cellulose and polyester microfibers to the freshwater amphipod Gammarus duebeni. Science of the Total Environment, 753, 141859. https://doi.org/10.1016/j.scitotenv.2020.141859
Mhiret Gela, S., & Aragaw, T. A. (2022). Abundance and characterization of microplastics in main urban ditches across the Bahir Dar City, Ethiopia. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.831417
Mitrano, D. M., & Wohlleben, W. (2020). Microplastic regulation should be more precise to incentivize both innovation and environmental safety. Nature Communications, 11(1), 5324. https://doi.org/10.1038/s41467-020-19069-1
Mohan, S., Princz, J., Ormeci, B., & DeRosa, M. C. (2019). Morphological transformation of silver nanoparticles from commercial products: Modeling from product incorporation, weathering through use scenarios, and leaching into wastewater. Nanomaterials, 9(9). https://doi.org/10.3390/nano9091258
Ng, E. L., Huerta Lwanga, E., Eldridge, S. M., Johnston, P., Hu, H. W., Geissen, V., & Chen, D. (2018a). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627, 1377–1388. https://doi.org/10.1016/j.scitotenv.2018.01.341
Ng, E. L., Huerta Lwanga, E., Eldridge, S. M., Johnston, P., Hu, H. W., Geissen, V., & Chen, D. (2018b). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627, 1377–1388. https://doi.org/10.1016/j.scitotenv.2018.01.341
Padervand, M., Lichtfouse, E., Robert, D., & Wang, C. (2020). Removal of microplastics from the environment. A review. Environmental Chemistry Letters, 18(3), 807–828. Springer. https://doi.org/10.1007/s10311-020-00983-1
Patchaiyappan, A., Ahmed, S. Z., Dowarah, K., Jayakumar, S., & Devipriya, S. P. (2020). Occurrence, distribution, and composition of microplastics in the sediments of South Andaman beaches. Marine Pollution Bulletin, 156, 111227. https://doi.org/10.1016/j.marpolbul.2020.111227
Qi, Y., Yang, X., Pelaez, A. M., Huerta Lwanga, E., Beriot, N., Gertsen, H., Garbeva, P., & Geissen, V. (2018). Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment, 645, 1048–1056. https://doi.org/10.1016/j.scitotenv.2018.07.229
Qu, M., Qiu, Y., Kong, Y., & Wang, D. (2019). Amino modification enhances reproductive toxicity of nanopolystyrene on gonad development and reproductive capacity in nematode Caenorhabditis elegans. Environmental Pollution, 254, 112978. https://doi.org/10.1016/J.ENVPOL.2019.112978
Rillig, M. C., Lehmann, A., de Souza Machado, A. A., & Yang, G. (2019). Microplastic effects on plants. New Phytologist, 223(3), 1066–1070. https://doi.org/10.1111/nph.15794
Rochman, C. M. (2018). Microplastics research-from sink to source. Science, 350(6384), 28–29. https://doi.org/10.1126/science.aar7734
Saliu, F., Montano, S., Garavaglia, M. G., Lasagni, M., Seveso, D., & Galli, P. (2018). Microplastic and charred microplastic in the Faafu Atoll, Maldives. Marine Pollution Bulletin, 136, 464–471. https://doi.org/10.1016/j.marpolbul.2018.09.023
Sommer, F., Dietze, V., Baum, A., Sauer, J., Gilge, S., Maschowski, C., & Gieré, R. (2018). Tire abrasion as a major source of microplastics in the environment. Aerosol and Air Quality Research, 18(8), 2014–2028. https://doi.org/10.4209/aaqr.2018.03.0099
Sun, H., Lei, C., Xu, J., & Li, R. (2021). Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants. Journal of Hazardous Materials, 416, 125854. https://doi.org/10.1016/J.JHAZMAT.2021.125854
Ullah, R., Tsui, M. T. K., Chen, H., Chow, A., Williams, C., & Ligaba-Osena, A. (2021). Microplastics interaction with terrestrial plants and their impacts on agriculture. Journal of Environmental Quality, 50(5), 1024–1041. https://doi.org/10.1002/jeq2.20264
van Kleunen, M., Brumer, A., Gutbrod, L., & Zhang, Z. (2020). A microplastic used as infill material in artificial sport turfs reduces plant growth. Plants People Planet, 2(2), 157–166. https://doi.org/10.1002/ppp3.10071
van Weert, S., Redondo-Hasselerharm, P. E., Diepens, N. J., & Koelmans, A. A. (2019). Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes. Science of The Total Environment, 654, 1040–1047. https://doi.org/10.1016/j.scitotenv.2018.11.183
Vidyasakar, A., Neelavannan, K., Krishnakumar, S., Prabaharan, G., Sathiyabama Alias Priyanka, T., Magesh, N. S., Godson, P. S., & Srinivasalu, S. (2018). Macrodebris and microplastic distribution in the beaches of Rameswaram Coral Island, Gulf of Mannar, Southeast coast of India: A first report. Marine Pollution Bulletin, 137, 610–616. https://doi.org/10.1016/j.marpolbul.2018.11.007
Wahl, A., le Juge, C., Davranche, M., el Hadri, H., Grassl, B., Reynaud, S., & Gigault, J. (2021). Nanoplastic occurrence in a soil amended with plastic debris. Chemosphere, 262, 127784. https://doi.org/10.1016/j.chemosphere.2020.127784
Wan, Y., Wu, C., Xue, Q., & Hui, X. (2019). Effects of plastic contamination on water evaporation and desiccation cracking in soil. Science of The Total Environment, 654, 576–582. https://doi.org/10.1016/j.scitotenv.2018.11.123
Watteau, F., Dignac, M.-F., Bouchard, A., Revallier, A., & Houot, S. (2018). Microplastic detection in soil amended with municipal solid waste composts as revealed by transmission electronic microscopy and pyrolysis/GC/MS. Frontiers in Sustainable Food Systems, 2. https://doi.org/10.3389/fsufs.2018.00081
Wang, Q., Guan, C., Han, J., Chai, M., & Li, R. (2022). Microplastics in China Sea: Analysis, status, source, and fate. In Science of the Total Environment (Vol. 803). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2021.149887
Windsor, F. M., Durance, I., Horton, A. A., Thompson, R. C., Tyler, C. R., & Ormerod, S. J. (2019). A catchment-scale perspective of plastic pollution. Global Change Biology, 25(4), 1207–1221. https://doi.org/10.1111/gcb.14572
Yee, M. S. L., Hii, L. W., Looi, C. K., Lim, W. M., Wong, S. F., Kok, Y. Y., Tan, B. K., Wong, C. Y., & Leong, C. O. (2021). Impact of microplastics and nanoplastics on human health. Nanomaterials, 11(2), 1–23. https://doi.org/10.3390/NANO11020496
Zhu, F., Zhu, C., Wang, C., & Gu, C. (2019). Occurrence and ecological impacts of microplastics in soil systems: A Review. Bulletin of Environmental Contamination and Toxicology, 102(6), 741–749. https://doi.org/10.1007/s00128-019-02623-z
Zuin, S., Gaiani, M., Ferrari, A., & Golanski, L. (2014). Leaching of nanoparticles from experimental water-borne paints under laboratory test conditions. Journal of Nanoparticle Research, 16(1). https://doi.org/10.1007/s11051-013-2185-1
Published
2023-10-30
How to Cite
HAFIZ, Nurfarwizah Adzuan; JALAUDIN BASHA, Nurin Nabilah; OSMAN, Mohamed Syazwan. Recent advances on microplastics/nanoplastics interaction with plant species: A concise review. Malaysian Journal of Chemical Engineering and Technology (MJCET), [S.l.], v. 6, n. 2, p. 88-97, oct. 2023. ISSN 2682-8588. Available at: <https://myjms.mohe.gov.my/index.php/mjcet/article/view/22497>. Date accessed: 16 sep. 2024. doi: https://doi.org/10.24191/mjcet.v6i2.22497.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.