Effect of doping on the structural properties of ZnO nanowires synthesised by ultrasonic-assisted immersion technique

  • Mohd Dzulfiqar Bakri NANO-SciTech Lab (NST), Centre for Functional Materials and Nanotechnology (FMN), Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia and Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
  • Mohd Firdaus Malek NANO-SciTech Lab (NST), Centre for Functional Materials and Nanotechnology (FMN), Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia and Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
  • Maryam Mohammad NANO-SciTech Lab (NST), Centre for Functional Materials and Nanotechnology (FMN), Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia and Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia and Center for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia
  • Ruziana Mohamed NANO-SciTech Lab (NST), Centre for Functional Materials and Nanotechnology (FMN), Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia and Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
  • Rosdiyana Hisam NANO-SciTech Lab (NST), Centre for Functional Materials and Nanotechnology (FMN), Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia and Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
  • Mohd Hanapiah Abdullah Center for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia
  • Mohd Husairi Fadzilah Suhaimi NANO-SciTech Lab (NST), Centre for Functional Materials and Nanotechnology (FMN), Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia and Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
  • Tetsuo Soga Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology (NITech), Showa-ku, Gokiso-cho, Nagoya, 466-8555, Japan
  • Mohamad Rusop Mahmood NANO-SciTech Lab (NST), Centre for Functional Materials and Nanotechnology (CFMN), Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia and Center for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

Abstract

Various procedures for producing high-quality zinc oxide (ZnO) nanowires (ZnO NWs) have been developed. Nevertheless, most of it rely on harsh circumstances such as high temperature, high pressure, costly materials, and complicated procedures. As a result, this study introduces an alternative ultrasonic-assisted immersion technique due to its many advantages such as low cost, ease of handling, and low energy consumption, as well as studying the effect of different precursors on the morphological, structural, and optical properties of the ZnO NWs, thus supporting and consolidating previous discoveries and providing a clearer understanding of the mechanism of ZnO formation. The most promising desirable features have been demonstrated for chromium doped ZnO NWs. Field emission scanning electron microscopy (FESEM) was used to examine the surface morphology of the samples, and x-ray diffraction (XRD) and UV-visible (UV-Vis) were utilised to investigate the structural and optical characteristics of the ZnO NWs. It was discovered that inserting Cr as a dopant for ZnO enhanced ZnO NWs by preventing quick electron-hole recombination, revealing it as the best dopant. This id due to reduced band gap (3.231 eV), relax strain (−0.2383%) and stress (0.560 GPa), and near zero porosities.

References

Abdel Messih, M. F., Ahmed, M. A., Soltan, A., & Anis, S. S. (2019). Synthesis and characterization of novel Ag/ZnO nanoparticles for photocatalytic degradation of methylene blue under UV and solar irradiation. Journal of Physics and Chemistry of Solids, 135, 109086. https://doi.org/10.1016/j.jpcs.2019.109086
Abdullah, M. A. R., Mamat, M. H., Ismail, A. S., Malek, M. F., Suriani, A. B., Ahmad, M. K., Shameem Banu, I. B., Amiruddin, R., & Rusop, M. (2019). Direct and seedless growth of Nickel Oxide nanosheet architectures on ITO using a novel solution immersion method. Materials Letters, 236, 460–464. https://doi.org/10.1016/j.matlet.2018.10.163
Alenezi, M. R. (2018). Hierarchical zinc oxide nanorings with superior sensing properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 236–237(January), 132–138. https://doi.org/10.1016/j.mseb.2018.11.011
Azulay, A. R., Turkulets, Y., Gaudio, D. Del, Goldman, R. S., & Shalish, I. (2020). Why do nanowires grow with their c-axis vertically-aligned in the absence of epitaxy? Scientific Reports, 10(1), 1–6. https://doi.org/10.1038/s41598-020-63500-y
Baruah, S., Rafique, F. F., & Dutta, J. (2008). Visible light photocatalysis by tailoring crystal defections in zinc oxide nanostructures. Nano, 3(5), 399–407. https://doi.org/10.1142/S179329200800126X
Belkhaoui, C., Mzabi, N., & Smaoui, H. (2019). Investigations on structural, optical and dielectric properties of Mn doped ZnO nanoparticles synthesized by co-precipitation method. Materials Research Bulletin, 111, 70–79. https://doi.org/10.1016/j.materresbull.2018.11.006
Bhutto, W. A., Soomro, A. M., Nizamani, A. H., Saleem, H., Khaskheli, M. A., Sahito, A. G., Das, R., Khan, U. A., & Saleem, S. (2019). Controlled Growth of Zinc Oxide Nanowire Arrays by Chemical Vapor Deposition ( CVD ) Method. International Journal of Computer Science and Network Security, 19(8), 135–141.
Chinnasamy, M., & Balasubramanian, K. (2020). Enhanced UV photodetection behavior of Cr doped wurtzite ZnO crystalline nanorods. Optical Materials, 110(October), 110492. https://doi.org/10.1016/j.optmat.2020.110492
Choi, K. S., & Chang, S. P. (2018). Effect of structure morphologies on hydrogen gas sensing by ZnO nanotubes. Materials Letters, 230(July), 48–52. https://doi.org/10.1016/j.matlet.2018.07.031
Ding, M., Guo, Z., Zhou, L., Fang, X., Zhang, L., Zeng, L., Xie, L., & Zhao, H. (2018). One-dimensional zinc oxide nanomaterials for application in high-performance advanced optoelectronic devices. Crystals, 8(5), 1–29. https://doi.org/10.3390/cryst8050223
Elzein, B., Yao, Y., Barham, A. S., Dogheche, E., & Jabbour, G. E. (2020). Toward the growth of self-catalyzed zno nanowires perpendicular to the surface of silicon and glass substrates, by pulsed laser deposition. Materials, 13(19), 1–14.
Huang, H., Xia, X., Yun, J., Huang, C., Li, D., Chen, B., Yang, Z., & Zhang, W. (2022). Interfacial engineering of hydrated vanadate to promote the fast and highly reversible H+/Zn2+ co-insertion processes for high-performance aqueous rechargeable batteries. Energy Storage Materials, 52(August), 473–484. https://doi.org/10.1016/j.ensm.2022.08.016
Jaballah, S., Benamara, M., Dahman, H., Ly, A., Lahem, D., Debliquy, M., & Mir, L. El. (2020). Effect of Mg-doping ZnO nanoparticles on detection of low ethanol concentrations. Materials Chemistry and Physics, 255. https://doi.org/10.1016/j.matchemphys.2020.123643
Jayaprakash, N., Suresh, R., Rajalakshmi, S., Raja, S., Sundaravadivel, E., Gayathri, M., & Sridharan, M. (2020). One-step synthesis, characterisation, photocatalytic and bio-medical applications of ZnO nanoplates. Materials Technology, 35(2), 112–124. https://doi.org/10.1080/10667857.2019.1659533
Jiao, T., Kutsanedzie, F. Y. H., Xu, J., Viswadevarayalu, A., Hassan, M. M., Li, H., Xu, Y., & Chen, Q. (2019). SERS-signal optimised AgNPs-plated-ZnO nanoflower-like structure synthesised for sensing applications. Physics Letters, Section A: General, Atomic and Solid State Physics, 383(12), 1312–1317. https://doi.org/10.1016/j.physleta.2019.01.026
Kabbur, S. M., Nadargi, D. Y., Kambale, R. C., Ghodake, U. R., & Suryavanshi, S. S. (2021). Microstructure and magnetic interactions of Co2+ substituted NiCuZn ferrites. Journal of Magnetism and Magnetic Materials, 517(August 2020), 167376. https://doi.org/10.1016/j.jmmm.2020.167376
Kaphle, A., Borunda, M. F., & Hari, P. (2018). Influence of cobalt doping on residual stress in ZnO nanorods. Materials Science in Semiconductor Processing, 84(March), 131–137. https://doi.org/10.1016/j.mssp.2018.05.019
Kasapoğlu, A. E., Habashyani, S., Baltakesmez, A., İskenderoğlu, D., & Gür, E. (2021). The effect of the change in the amount of Sb doping in ZnO nanorods for hydrogen gas sensors. International Journal of Hydrogen Energy, 46(41), 21715–21725. https://doi.org/10.1016/j.ijhydene.2021.03.229
Kennedy, O. W., White, E. R., Shaffer, M. S. P., & Warburton, P. A. (n.d.). Vapour-liquid-solid growth of ZnO-ZnMgO core – shell nanowires by gold-catalysed molecular beam epitaxy. 2–7.
Kim, M. J., Alvarez, S., Yan, T., Tadepalli, V., Fichthorn, K. A., & Wiley, B. J. (2018). Modulating the Growth Rate, Aspect Ratio, and Yield of Copper Nanowires with Alkylamines. Chemistry of Materials, 30(8), 2809–2818. https://doi.org/10.1021/acs.chemmater.8b00760
Latif, M. M. A. El, Ibrahim, A. M., & Gohr, M. S. (2019). Alcohol / water mediated preparation of ZnO nano hollow sphere. September.
Lehru, R., Radhanpura, J., Kumar, R., Zala, D., Vadgama, V. S., Dadhich, H., Rathod, V. R., Trivedi, R. K., Pandya, D. D., Shah, N. A., & Solanki, P. S. (2021). Studies on electrical properties of Fe doped ZnO nanostructured oxides synthesized by sol–gel method. Solid State Communications, 336(December 2020), 114415. https://doi.org/10.1016/j.ssc.2021.114415
Li, H., Zhao, W., Liu, Y., Liang, Y., Ma, L., Zhu, M., Yi, C., Xiong, L., & Gao, Y. (2019). High-level-Fe-doped P-type ZnO nanowire array/n-GaN film for ultraviolet-free white light-emitting diodes. Materials Letters, 239, 45–47. https://doi.org/10.1016/j.matlet.2018.12.041
Lu, M., Han, E., Zhu, L., Chen, S., & Zhang, G. (2016). The effects of Ti4 +-Fe3 + co-doping on Li[Ni1/3Co1/3Mn1/3]O2. Solid State Ionics, 298, 9–14. https://doi.org/10.1016/j.ssi.2016.10.014
Lv, Y., Zhang, Z., Yan, J., Zhao, W., & Zhai, C. (2018). Al doping influences on fabricating ZnO nanowire arrays: Enhanced field emission property. Ceramics International, 44(7), 7454–7460. https://doi.org/10.1016/j.ceramint.2018.01.118
Mamat, M. H., Khusaimi, Z., Musa, M. Z., Malek, M. F., & Rusop, M. (2011). Fabrication of ultraviolet photoconductive sensor using a novel aluminium-doped zinc oxide nanorod-nanoflake network thin film prepared via ultrasonic-assisted sol-gel and immersion methods. Sensors and Actuators, A: Physical, 171(2), 241–247. https://doi.org/10.1016/j.sna.2011.07.002
Mamat, M. H., Malek, M. F., Hafizah, N. N., Khusaimi, Z., Musa, M. Z., & Rusop, M. (2014). Sensors and Actuators B : Chemical Fabrication of an ultraviolet photoconductive sensor using novel nanostructured , nanohole-enhanced , aligned aluminium-doped zinc oxide nanorod arrays at low immersion times. Sensors & Actuators: B. Chemical, 195, 609–622. https://doi.org/10.1016/j.snb.2014.01.082
Mohamed, R. M., & Ismail, A. A. (2021). Mesoporous α-Fe2O3/ZnO heterojunction with a synergistic effect forrapid and efficient reduction of mercury ions. Separation and Purification Technology, 266(November 2020), 118360. https://doi.org/10.1016/j.seppur.2021.118360
Mohammed, D. S. (2019). High Quality Factor Plasmonic Laser Based on Two Cavity Design. August.
Mosalagae, K., Murape, D. M., & Lepodise, L. M. (2020). Effects of growth conditions on properties of CBD synthesized ZnO nanorods grown on ultrasonic spray pyrolysis deposited ZnO seed layers. Heliyon, 6(7), e04458. https://doi.org/10.1016/j.heliyon.2020.e04458
Musa, M. Z., Mamat, M. H., Vasimalai, N., Shameem Banu, I. B., Malek, M. F., Ahmad, M. K., Suriani, A. B., Mohamed, A., & Rusop, M. (2020). Fabrication and structural properties of flower-like TiO2 nanorod array films grown on glass substrate without FTO layer. Materials Letters, 273, 127902. https://doi.org/10.1016/j.matlet.2020.127902
Nasiri Khalil Abad, S., Moghaddam, J., Mozammel, M., Mostafaei, A., & Chmielus, M. (2019). Growth mechanism and charge transport properties of hybrid Au/ZnO nanoprisms. Journal of Alloys and Compounds, 777, 1386–1395. https://doi.org/10.1016/j.jallcom.2018.11.084
Nevárez Martínez, M. C., Bajorowicz, B., Klimczuk, T., Żak, A., Łuczak, J., Lisowski, W., & Zaleska-Medynska, A. (2020). Synergy between AgInS2 quantum dots and ZnO nanopyramids for photocatalytic hydrogen evolution and phenol degradation. Journal of Hazardous Materials, 398(June). https://doi.org/10.1016/j.jhazmat.2020.123250
Okeke, I. S., Agwu, K. K., Ubachukwu, A. A., Madiba, I. G., Maaza, M., Whyte, G. M., & Ezema, F. I. (2021). Impact of particle size and surface defects on antibacterial and photocatalytic activities of undoped and Mg-doped ZnO nanoparticles, biosynthesized using one-step simple process. Vacuum, 187(February), 110110. https://doi.org/10.1016/j.vacuum.2021.110110
Poornaprakash, B., Chalapathi, U., Subramanyam, K., Vattikuti, S. V. P., & Park, S. H. (2020). Wurtzite phase Co-doped ZnO nanorods: Morphological, structural, optical, magnetic, and enhanced photocatalytic characteristics. Ceramics International, 46(3), 2931–2939. https://doi.org/10.1016/j.ceramint.2019.09.289
Poul Raj, I. L., Valanarasu, S., Hariprasad, K., Ponraj, J. S., Chidhambaram, N., Ganesh, V., Ali, H. E., & Khairy, Y. (2020). Enhancement of optoelectronic parameters of Nd-doped ZnO nanowires for photodetector applications. Optical Materials, 109(July), 110396. https://doi.org/10.1016/j.optmat.2020.110396
Qiang, M., Yin, X., Lin, H., Hong, R., Zhang, D., Zhang, Z., Zhou, S., Chen, J., Tian, Y., Zheng, G., & Ding, Y. (2022). ZnAl2O4:Cr3+ translucent ceramic phosphor with thermally stable far-red luminescence. Optical Materials, 133(September), 112887. https://doi.org/10.1016/j.optmat.2022.112887
Saleh, S. M. (2019). ZnO nanospheres based simple hydrothermal route for photocatalytic degradation of azo dye. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 211, 141–147. https://doi.org/10.1016/j.saa.2018.11.065
Sathya, M., & Pushpanathan, K. (2018). Synthesis and Optical Properties of Pb Doped ZnO Nanoparticles. Applied Surface Science, 449, 346–357. https://doi.org/10.1016/j.apsusc.2017.11.127
Shah, A., Ahmad, M., Rahmanuddin, Khan, S., Aziz, U., Ali, Z., Khan, A., & Mahmood, A. (2019). The role of Al doping on ZnO nanowire evolution and optical band gap tuning. Applied Physics A: Materials Science and Processing, 125(10), 14–17. https://doi.org/10.1007/s00339-019-3005-y
Sharma, H. K., Archana, R., Sankar ganesh, R., Singh, B. P., Ponnusamy, S., Hayakawa, Y., Muthamizhchelvan, C., Raji, P., Kim, D. Y., & Sharma, S. K. (2019). Substitution of Al3+ to Zn2+ sites of ZnO enhanced the photocatalytic degradation of methylene blue under irradiation of visible light. Solid State Sciences, 94, 45–53. https://doi.org/10.1016/j.solidstatesciences.2019.05.011
Sinju, K. R., Ramgir, N. S., Pathak, A., Debnath, A. K., & Muthe, K. P. (2020). Multiple sensor array based on ZnO nanowires for electronic nose applications towards toxic gases. AIP Conference Proceedings, 2265(November). https://doi.org/10.1063/5.0017841
Sofea, Z., Malek, M. F., Mohamed, R., Mamat, M. H., & Rusop, M. (2020). Optical and Structural Properties of Zinc Oxide : Graphene Oxide Nanorods Via Sol-Gel Assisted Immersion Technique. 2(October 2019), 19–24.
Susner, M. A., Carnevale, S. D., Kent, T. F., Gerber, L. M., Phillips, P. J., Sumption, M. D., & Myers, R. C. (2014). Catalyst-free ZnO nanowires on silicon by pulsed laser deposition with tunable density and aspect ratio. Physica E: Low-Dimensional Systems and Nanostructures, 62, 95–103. https://doi.org/10.1016/j.physe.2014.04.023
Tang, B., Xiang, Q., Fang, Z., Zhang, X., Xiong, Z., Li, H., Yuan, C., & Zhang, S. (2019). Influence of Cr 3+ substitution for Mg 2+ on the crystal structure and microwave dielectric properties of CaMg 1-x Cr 2x/3 Si 2 O 6 ceramics. Ceramics International, 45(9), 11484–11490. https://doi.org/10.1016/j.ceramint.2019.03.016
Terasako, T., Obara, S., Yagi, M., Nomoto, J., & Yamamoto, T. (2019). Structural and photoluminescence properties of ZnO nanorods grown on ion-plated Ga-doped ZnO seed layers by chemical bath deposition and fabrication of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)/ZnO nanorods heterostructures. Thin Solid Films, 677, 109–118. https://doi.org/10.1016/j.tsf.2019.03.025
Tu, Y., Chen, S., Li, X., Gorbaciova, J., Gillin, W. P., Krause, S., & Briscoe, J. (2018). Control of oxygen vacancies in ZnO nanorods by annealing and their influence on ZnO/PEDOT:PSS diode behaviour. Journal of Materials Chemistry C, 6(7), 1815–1821. https://doi.org/10.1039/c7tc04284a
Xu, F., Zhou, C., & Ho, H. P. (2021). A rule for operation temperature selection of a conductometric VOC gas sensor based on ZnO nanotetrapods. Journal of Alloys and Compounds, 858, 158294. https://doi.org/10.1016/j.jallcom.2020.158294
Zauner, L., Hahn, R., Aschauer, E., Wojcik, T., Davydok, A., Hunold, O., Polcik, P., & Riedl, H. (2022). Assessing the fracture and fatigue resistance of nanostructured thin films. Acta Materialia, 239, 118260. https://doi.org/10.1016/j.actamat.2022.118260
Zhang, W., Li, P., Li, Y., Chen, H., Wang, X., Ma, J., & Zhao, X. (2022). Structural, optical and electrical properties of sol-gel spin-coated Ga and F Co-doped ZnO films. Thin Solid Films, 746(January), 139121. https://doi.org/10.1016/j.tsf.2022.139121
Zhao, S., Shen, Y., Li, A., Chen, Y., Gao, S., Liu, W., & Wei, D. (2021). Effects of rare earth elements doping on gas sensing properties of ZnO nanowires. Ceramics International, 47(17), 24218–24226. https://doi.org/10.1016/j.ceramint.2021.05.133
Zheng, B., Fan, J., Chen, B., Qin, X., Wang, J., Wang, F., Deng, R., & Liu, X. (2022). Rare-Earth Doping in Nanostructured Inorganic Materials. Chemical Reviews, 122(6), 5519–5603. https://doi.org/10.1021/acs.chemrev.1c00644
Zhou, Q., Wen, J. Z., Zhao, P., & Anderson, W. A. (2017). Synthesis of vertically-aligned zinc oxide nanowires and their application as a photocatalyst. Nanomaterials, 7(1), 1–13. https://doi.org/10.3390/nano7010009
Published
2023-10-30
How to Cite
BAKRI, Mohd Dzulfiqar et al. Effect of doping on the structural properties of ZnO nanowires synthesised by ultrasonic-assisted immersion technique. Malaysian Journal of Chemical Engineering and Technology (MJCET), [S.l.], v. 6, n. 2, p. 98-106, oct. 2023. ISSN 2682-8588. Available at: <https://myjms.mohe.gov.my/index.php/mjcet/article/view/21828>. Date accessed: 25 july 2024. doi: https://doi.org/10.24191/mjcet.v6i2.21828.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.