Dual phase zirconium-based metal-organic gel (Zr-MOG) as chromium (VI) removal via photoreduction
Abstract
Given the widespread production of Cr(VI) from numerous industrial processes, as well as its harmful toxicity as a carcinogenic agent, it is critical to explore stable and efficient adsorbents with quick performance for Cr(VI). Recently, environmentally friendly adsorbents have been employed to reduce metallic pollutants in aqueous media called zirconium-containing metal-organic frameworks (Zr-MOFs) or UiO-66. UiO-66 are favourable because of their nontoxic metal sources, outstanding stabilities, and distinctive physicochemical characteristics. Despite the benefits of using MOFs, overcoming their poor macro-shaping and hydro-stability to be used as commercial adsorbents and catalysts remains a significant problem. Zirconium-based metal-organic gel (Zr-MOG) xerogel is widely known as a new nanomaterial to overcome metal-organic framework (MOFs) disadvantage as microcrystalline powder. This research is an effort to investigate green Zr-MOG as a potential photocatalyst for reducing Cr(VI) to Cr(III) ions. The behaviour of Zr-MOG in dark adsorption and photocatalysis, with and without a scavenger, as well as its reusability were studied. Besides that, synthesised Zr-MOG xerogel exhibited three different X-ray diffraction (XRD) pattern categories: fully amorphous, 1:1 ratio and 1:4 ratio of amorphous and crystalline structure. The performance of pure amorphous MOG, pure crystalline MOG and dual-phase MOG as photocatalysts were compared. The dual-phase structure Zr-MOG 5 exhibits the greatest Cr(VI) ion reduction, with an 87% removal rate in 120 minutes.
References
Albers, P., Maier, M., Reisinger, M., Hannebauer, B., & Weinand, R. (2015). Physical boundaries within aggregates - Differences between amorphous, para-crystalline, and crystalline Structures. Crystal Research and Technology, 50(11), 846–865. https://doi.org/10.1002/crat.201500040
Bennett, T. D., & Cheetham, A. K. (2014). Amorphous metal−organic frameworks. Accounts of Chemical Research, 47(5), 1555–1562. https://doi.org/10.1021/ar5000314
Bueken, B., Velthoven, N. V., Willhammar, T., Stassen, I., Keen, D. A., Baron, G. V., Joeri, F. M., Ameloot, R., Bals, S., Vos, D. De, & Thomas, D. (2020). Gel-based morphological design of zirconium metal-organic frameworks supporting info. Chemical Science, 8(5),
1–14. https://doi.org/10.1039/C6SC05602D
Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 130(42), 13850–13851. https://doi.org/10.1021/ja8057953
Chen, M., Long Z., Gang W., Jun G., Liuxiao L., Qiyuan H., Ye C. & Hua Z. (2021). Phase engineering of metal-organic frameworks. Aggregate 3(1), 1–5. https://doi.org/10.1002/agt2.145
Connolly, B. M., Aragones-Anglada, M., Gandara-Loe, J., Danaf, N. A., Lamb, D. C., Mehta, J. P., Vulpe, D., Wuttke, S., Silvestre-Albero, J., Moghadam, P. Z., Wheatley, A. E. H., & Fairen-Jimenez, D. (2019). Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage. Nature Communications, 10(1), 1–11. https://doi.org/10.1038/s41467-019-10185-1
Costa, M. (2003). Potential hazards of hexavalent chromate in our drinking water. Toxicology and Applied Pharmacology, 188(1), 1–5. https://doi.org/10.1016/S0041-008X(03)00011-5
Fadli, M. F. M., Misran, H., Othman, S. Z., Bahari, A. M. S., Samsudin, N. A., Rosli, S. A., Lockman, Z., Matsumoto, A., & Amin, N. (2019). Room temperature synthesis and characterizations of CU-MOF using natural polysaccharide as potential organic linker. International Journal of Recent Technology and Engineering, 8(4), 6490–6498. https://doi.org/10.35940/ijrte.D5163.118419
Gökpinar, S., Ernst, S. J., Hastürk, E., Möllers, M., El Aita, I., Wiedey, R., Tannert, N., Nießing, S., Abdpour, S., Schmitz, A., Quodbach, J., Füldner, G., Henninger, S. K., & Janiak, C. (2019). Air-con metal-organic frameworks in binder composites for water adsorption heat transformation systems. Industrial and Engineering Chemistry Research, 58(47), 21493–21503. https://doi.org/10.1021/acs.iecr.9b04394
Huskić, I., Novendra, N., Lim, D. W., Topić, F., Titi, H. M., Pekov, I. V., Krivovichev, S. V., Navrotsky, A., Kitagawa, H., & Friščić, T. (2019). Functionality in metal-organic framework minerals: Proton conductivity, stability and potential for polymorphism. Chemical Science, 10(18), 4923–4929. https://doi.org/10.1039/c8sc05088k
Institute for Health Metrics and Evaluation (IHME) (2021). Global Burden of Disease Study 2019 (GBD 2019) Results. Seattle. Retrieved May 19, 2023
Jiang, C., Sun, R., Du, Z., Singh, V., & Chen, S. (2020). A cationic Zr-based metal organic framework with enhanced acidic resistance for selective and efficient removal of CrO42-. New Journal of Chemistry, 44(29), 12646–12653. https://doi.org/10.1039/d0nj02279a
Kampouri, S., Ireland, C. P., Valizadeh, B., Oveisi, E., Schouwink, P. A., Mensi, M., & Stylianou, K. C. (2018). Mixed-phase MOF-derived titanium dioxide for photocatalytic hydrogen evolution: The impact of the templated morphology. ACS Applied Energy Materials, 1(11), 6541–6548. https://doi.org/10.1021/acsaem.8b01445
Kobielska, P. A., Howarth, A. J., Farha, O. K., & Nayak, S. (2018). Metal–organic frameworks for heavy metal removal from water. Coordination Chemistry Reviews, 358, 92–107. https://doi.org/10.1016/j.ccr.2017.12.010
Li, L., Xiang, S., Cao, S., Zhang, J., Ouyang, G., Chen, L., & Su, C. Y. (2013). A synthetic route to ultralight hierarchically micro/mesoporous Al (III)-carboxylate metal-organic aerogels. Nature Communications, 4, 1774–1779. https://doi.org/10.1038/ncomms2757
Li, R., Zhang, W., & Zhou, K. (2018). Metal–organic-framework-based catalysts for photoreduction of CO2. Advanced Materials, 30(35), 1–31. https://doi.org/10.1002/adma.201705512
Lin, Y., Weng, C., Tzeng, J., & Lin, Y. (2016). Adsorption and photocatalytic kinetics of visible-light response N-Doped TiO2 nanocatalyst for indoor acetaldehyde removal under dark and light conditions. International Journal of Photoenergy, 2016, 3058429. https://doi.org/10.1155/2016/3058429
Lv, S. W., Liu, J. M., Li, C. Y., Zhao, N., Wang, Z. H., & Wang, S. (2019). A novel and universal metal-organic frameworks sensing platform for selective detection and efficient removal of heavy metal ions. Chemical Engineering Journal, 375, 122111. https://doi.org/10.1016/j.cej.2019.122111
Mahadi, N., Misran, H., Othman, S. Z., Jamaludin, N. S., Manap, A., & Anuar, N. F. S. (2015). Hydrothermal synthesis and characterizations of MOF-199 using renewable template. Applied Mechanics and Materials, 773–774(3), 226–231. https://doi.org/10.4028/www.scientific.net/amm.773-774.226
Mohan, A., De Jong, M. M., Poulios, I., Schropp, R. E. I., & Rath, J. K. (2015). Gas phase synthesis of two ensembles of silicon nanoparticles. Journal of Physics D: Applied Physics, 48(37), 375201. https://doi.org/10.1088/0022-3727/48/37/375201
Noraee, Z., Jafari, A., Ghaderpoori, M., Kamarehie, B., & Ghaderpoury, A. (2019). Use of metal-organic framework to remove chromium (VI) from aqueous solutions 03 chemical sciences 0306 physical chemistry (incl. structural). Journal of Environmental Health Science and Engineering, 17(2), 701–709. https://doi.org/10.1007/s40201-019-00385-8
Nuclear Energy Agency. (2015). Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal- hydraulics and Technologies (2015 edition). Nuclear Science.
Pakade, V. E., Tavengwa, N. T., & Madikizela, L. M. (2019). Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Advances, 9(45), 26142–26164. https://doi.org/10.1039/c9ra05188k
Pinto, M. L., Dias, S., & Pires, J. (2013). Composite MOF foams: The example of UiO-66/polyurethane. ACS Applied Materials and Interfaces, 5(7), 2360–2363. https://doi.org/10.1021/am303089g
Rajeshkumar, S., Liu, Y., Zhang, X., Ravikumar, B., Bai, G., & Li, X. (2018). Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere, 191, 626–638. https://doi.org/10.1016/j.chemosphere.2017.10.078
Rosli, S. A., Alias, N., Bashirom, N., Ismail, S., Tan, W. K., Kawamura, G., Matsuda, A., & Lockman, Z. (2021). Hexavalent chromium removal via photoreduction by sunlight on titanium–dioxide nanotubes formed by anodization with a fluorinated glycerol–water electrolyte. Catalysts, 11(3), 1–19. https://doi.org/10.3390/catal11030376
Santos-Lorenzo, J., San José-Velado, R., Albo, J., Beobide, G., Castaño, P., Castillo, O., Luque, A., & Pérez-Yáñez, S. (2019). A straightforward route to obtain zirconium-based metal-organic gels. Microporous and Mesoporous Materials, 284, 128–132.
Shaiful Bahari, A. M., Othman, S. Z., Mohamad Fadli, M. F., Zulkifli, M. Z. A., Biyamin, S. A., Islam, M. A., Aspanut, Z., Amin, N., & Misran, H. (2021a). Facile synthesis of Zr-based metal-organic gel (Zr-MOG) using “green” sol-gel approach. Surfaces and Interfaces, 27, 101469. https://doi.org/10.1016/j.surfin.2021.101469
Shaiful Bahari, A. M., Zulkifli, N. H., Azmin, A. N., Alias, N., Rosli, S. A., Sazalli, N. A. H., Lockman, Z., Amin, N., & Misran, H. (2021b). Facile synthesis of chloride-less zirconium-based metal- organic framework (MOF) as chromium (VI) removal via photoreduction. Malaysian Journal of Microscopy, 17(2), 220–238.
Shokouhfar, N., Aboutorabi, L., & Morsali, A. (2018). Improving the capability of UiO-66 for Cr(vi) adsorption from aqueous solutions by introducing isonicotinate: N -oxide as the functional group. Dalton Transactions, 47(41), 14549–14555. https://doi.org/10.1039/c8dt03196g
Torbina, V. V., Nedoseykina, N. S., Ivanchikova, I. D., Kholdeeva, O. A., & Vodyankina, O. V. (2019). Propylene glycol oxidation with hydrogen peroxide over Zr-containing metal-organic framework UiO-66. Catalysis Today, 333, 47–53. https://doi.org/10.1016/j.cattod.2018.11.063
Valvekens, P., Vermoortele, F., & De Vos, D. (2013). Metal-organic frameworks as catalysts: The role of metal active sites. Catalysis Science and Technology, 3(6), 1435–1445. https://doi.org/10.1039/c3cy20813c
Wani, P. A., Wani, J. A., & Wahid, S. (2018). Recent advances in the mechanism of detoxification of genotoxic and cytotoxic Cr(VI) by microbes. Journal of Environmental Chemical Engineering, 6(4),
3798–3807. https://doi.org/10.1016/j.jece.2018.05.042
Wen, J., Fang, Y., & Zeng, G. (2018). Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: A review of studies from the last decade. Chemosphere, 201, 627–643. https://doi.org/10.1016/j.chemosphere.2018.03.047
Wiktor, C., Meledina, M., Turner, S., Lebedev, O. I., & Fischer, R. A. (2017). Transmission electron microscopy on metal-organic frameworks-a review. Journal of Materials Chemistry A, 5(29), 14969–14989. https://doi.org/10.1039/c7ta00194k
Yang, F., Li, W., & Tang, B. (2018). Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. Journal of Alloys and Compounds, 733,
8–14. https://doi.org/10.1016/j.jallcom.2017.10.129
Yang, Y., Wang, G., Peng, C., Deng, Q., Yu, Y., He, X., Hu, T., Jiang, L., Shan, S., Zheng, Y., Zhi, Y., & Su, H. (2023). Microwave-assisted synthesis of l-aspartic acid-based metal organic aerogel (MOA) for efficient removal of oxytetracycline from aqueous solution. Applied Surface Science, 610, 155608. https://doi.org/10.1016/j.apsusc.2022.155608
Zhao, J., Lee, D. T., Yaga, R. W., Hall, M. G., Barton, H. F., Woodward, I. R., Oldham, C. J., Walls, H. J., Peterson, G. W., & Parsons, G. N. (2016). Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs. Angewandte Chemie-International Edition, 55(42), 13224–13228. https://doi.org/10.1002/anie.201606656