SPECTROSCOPIC STUDIES ON THE INCLUSION COMPLEXATION OF VALINE ENANTIOMERS WITH β-CYCLODEXTRIN
Abstract
Since the β-cyclodextrin (β-CD) molecule has a cavity that is hydrophobic, it is conceivable for it to form inclusion complexes with hydrophobic chemicals when the surrounding environment is aqueous. However, the characterization and binding constant for its inclusion complexation with valine enantiomers have not been thoroughly clarified. Hence, FTIR and UV spectroscopy were utilized to investigate the inclusion complexes formed by the enantiomers L-valine and D-valine in aqueous solution with β-CD. According to the FTIR spectra, the differing relative intensities, and characteristic band shifts of the two enantiomers show that they have different interactions when they are complexed with β-CD. Experiments with the FTIR spectrometer indicated a discernible decreasing of the C-O stretching and ring deformation, both of which point to the embedding of valine into the β-CD cavity. When β-CD is present, it is shown that there are significant variances between L- and D-valine at neutral pH. The Benesi–Hildebrand plot was used to determine the stoichiometry ratio as well as the binding constant of the inclusion complexes. The inclusion complex involving β-CD and the enantiomer of valine had a stoichiometry ratio of 1:1. L-valine has a binding constant that is 4922.47 M-1, which is higher than that of D-valine that is 1010.67 M-1. Based on these findings, it appeared that β-CD formed inclusion complexes with L-valine more preferentially rather than D-valine. According to the findings, β-CD possesses the potential to act as an effective chiral selector for valine enantiomers.
References
2. Disouza VT, Lipkowitz KB (1998) Cyclodextrins: introduction. Chem Rev 98:1741
3. Ribeiro ACF, Esteso MA, Lobo VMM, Valente AJM, Simoes SMN, Sobral AJFN, Ramos ML, Burrows HD, Amado AM, D’Costa A (2006) Interactions of copper (II) chloride with cyclodextrin in aqueous solutions at 25 and 37 C. J Carbohydr Chem 25:173–185
4. Clarke RJ, Coates JH, Lincoln SF (1988) Inclusion Complexes of the Cyclomalto-Oligosaccharides (Cyclodextrins). Adv Carbohydr Chem Biochem 46:205
5. Bender, M. L. and Komiyama, M. (2012). Cyclodextrin chemistry. Springer Berlin Heidelberg, New York: 2 – 3.
6. Abarca, R. L., Rodriguez, F. J., Guarda, A., Galotto, M. J. and Bruna, J. E. (2016). Characterization of betacyclodextrin inclusion complexes containing an essential oil component. Food Chemistry, 196: 968 – 975.
7. Zhu, X., Sun, J. and Wu, J. (2007). Study on the inclusion interactions of β-cyclodextrin and its derivative with dyes by spectrofluorimetry and its analytical application. Talanta, 72(1): 237 − 242.
8. Shimpi, S., Chauhan, B., Shimpi, P.(2005) : Cyclodextrins: application in different routes of drug administration. Acta Pharm. 55, 139–156
9. Linde, G.A., Laverde Jr, A., de Faria, E.V., Colanto, N.B., de Moraes, F.F., Zanin, G.M.(2010): The use of 2D NMR to study β-cyclodextrin complexation and debittering of amino acids and peptides. Food Res. Int. 43, 187–192
10. Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046
11. Wang, X.; Li, G.; Guo, Y.; Zheng, Q.; Fang, W.; Bian, P.; Zhang, L. J.(2014) Chem. Thermodyn. 78, 128–133.
12. Aachmann, F. L.; Larsen, K. L.; Wimmer, R. J. (1995) Inclusion Phenom. Macrocycl. Chem. 2012, 73, 349–357.
13. Ramanathan, R.; Prokai, L. J. Am. (1995) Soc. Mass Spectrom. 6, 866–871.
14. Wan, H.; Engström, A.; Blomberg, L. G. J.(1996) Chromatogram, 731, 283–292.
15. Ramirez, J.; Ahn, S.; Grigorean, G.; Lebrilla, C. B. J.(2000) Am. Chem. Soc. 122, 6884–6890.
16. Stephany, O.; Tisse, S.; Coadou, G.; Bouillon, J.-P.; Peulon-Agasse, V.; Cardinael, P. J. (2012) Chromatogr., 1270, 254–261.
17. Choi, Y.; Jung, S. (2004) Carbohydr. Res. 339, 1961–1966.
18. Yeguas, V.; Altarsha, M.; Monard, G.; López, R.; Ruiz-López, M. F. J. (2011) Phys. Chem. A, 115, 11810–11817.
19. Aachmann FL, Otzen DE, Larsen KL, Wimmer R (2003) Structural background of cyclodextrin-protein interactions. Protein Eng 16:905–912
20. Saha R, Rakshit S, Pal SK (2013) Molecular recognition of a model globular protein apomyoglobin by synthetic receptor cyclodextrin: effect of fluorescence modification of the protein and cavity size of the receptor in the interaction. J Mol Recognit 26:568–577
21. Loftsson T, Brewster ME (1996) Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 85:1017–1025
22. Ramanathan, R., Prokai, L. (1995): Electrospray ionization mass spectrometric study of encapsulation of amino acids by cyclodextrin. J. Am. Soc. Mass Spectrom. 6, 866–871
23. Schneider HJ, Hacket F, Rüdiger V, Ikeda H (1998) NMR studies of cyclodextrins and cyclodextrin complexes. Chem Rev 98:1755–1786
24. Alvira, E. (2015) .Theoretical study of the separation of valine enantiomers by β-cyclodextrin with different solvents: a molecular mechanics and dynamics simulation. Tetrahedron: Asymmetry 10:37-60
25. Marconi, G.; Mezzina, E.; Manet, I.; Manoli, F.; Zambelli, B.; Monti, S. (2011) Stereoselective interaction of ketoprofen enantiomers with β -cyclodextrin: ground state binding and photochemistry. Photochemical & Photobiological Sciences, 10 (1), 48 -59.
26. De Paula, E., Cereda, C., Tofoli, G. R., Franz-Montan, M., Fraceto, L. F. and de Araújo, D. R. (2010). Drug delivery systems for local anesthetics. Recent Patents on Drug Delivery & Formulation, 4(1): 23 − 34.
27. Loftsson, T. and Duchene, D. (2007). Cyclodextrins and their pharmaceutical applications. International Journal of Pharmaceutics, 329(1-2): 1 − 11.
28. Machelart, A., Salzano, G., Li, X., Demars, A., Debrie, A. S., Menendez-Miranda, M., and Belhaouane, I. (2019). Intrinsic antibacterial activity of nanoparticles made of β- cyclodextrins potentiates their effect as drug nanocarriers against tuberculosis. ACS Nano, 13(4): 3992 − 4007.
29. Rasheed, A. (2008). Cyclodextrins as drug carrier molecule: A review. Scientia Pharmaceutica, 76(4): 567 − 598.
30. Crini, G., Fourmentin, S., Fenyvesi, E., Torri, G., Fourmentin, M. and Morin-Crini, N. (2018). Cyclodextrin fundamentals, reactivity and analysis. Springer Cham, Besancon: 1 – 55.
31. Stella, V. J. and He, Q. (2008). Cyclodextrins. Toxicologic Pathology, 36(1): 30 − 42.
32. Dobreniecki, S. (2013). Metabolic Engineering of Saccharomyces cerevisiae and Escherichia coli for the Production of Retinoids (Doctoral dissertation, University of the Sciences in Philadelphia).
33. Lynch CJ, Adams SH (December 2014). "Branched-chain amino acids in metabolic signalling and insulin resistance" Nature Reviews. Endocrinology. 10 (12): 723–36.
34. Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, et al. (April 2016). "A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance" Nature Medicine. 22 (4): 421–6.
35. Y. Sonoda, F. Hirayama, H. Arima, Y. Yamaguchi, W. Saenger, K. Uekama, . (2006) Chem. Commun, 517.
36. Mohammed Jafar, Mohammed Salahuddin, Tarek S Kayed, Niyaz Ahmad, Huda A Al-Eid, Abdullah H Al-Qarross, (2017). Buoyant in situ gels of meloxicam-β-cyclodextrin-triethanolamine ternary complex for oral delivery; from a Box-Behnken experimental design to in vivo activity detail. Asian Journal of Chemistry, 29(6): 1275-1284
37. Folch-Cano C, Yazdani-Pedram M, Olea-Azar C, (2014). Inclusion and Functionalization of Polymers with Cyclodextrins: Current Applications and Future Prospects. Molecules, 19: 14066-14079.
38. Jafar M, Salahuddin M, Bolla SR, (2018). Gastric floating in-situ gel as a strategy for improving anti inflammatory activity of meloxicam. J App Pharm Sci, 8(11): 095–102.
39. Li, N., Liu, J., Zhao, X., Gao, Y. A., Zheng, L., Zhang, J. and Yu, L. (2007). Complex formation of ionic liquid surfactant and β-cyclodextrin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292(2-3): 196 − 201.
40. Li, W., Lu, B., Sheng, A., Yang, F. and Wang, Z. (2010). Spectroscopic and theoretical study on inclusion complexation of beta-cyclodextrin with permethrin. Journal of Molecular Structure, 981(1-3): 194 – 203.
41. Li, J., Ni, X., Zhou, Z. and Leong, K. W. (2003). Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly (propylene oxide)-poly (ethylene oxide)-poly (propylene oxide) triblock copolymers and α-cyclodextrin. Journal of the American Chemical Society, 125(7): 1788 − 1795.
42. Rusa, C. C., Luca, C. and Tonelli, A. E. (2001). Polymer-cyclodextrin inclusion compounds: Toward new aspects of their inclusion mechanism. Macromolecules, 34(5): 1318 − 1322.
43. Blanco, M.; Coello, J.; Iturriaga, H.; Maspoch, S.; Pérez -Maseda, C., (2000) Circular dichroism spectra of cyclodextrins inclusion complexes: Determination of enantiomeric purity. Analytica chimica acta, 407 (1 -2): 233 -245.
44. Inoue, Y.; Hakushi, T.; Liu, Y.; Tong, L.; Shen, B.; Jin, D.,(1993) Thermodynamics of molecular recognition by cyclodextrins. 1. Calorimetric titration of inclusion complexation of naphthalenesulfonates with. alpha. -,. beta. -, and. gamma. -cyclodextrins: enthalpy -entropy compensation. Journal of the American Chemical Society, 115 (2), 475 -481.
45. Linert, W.; Han, L. -f.; Lukovits, I.,(1989) The use of the isokinetic relationship and molecular mechanics to investigate molecular interactions in inclusion complexes of cyclodextrins. Chemical physics, 139 (2 -3), 441 -455.
46. Ross, P. D.; Rekharsky, M. V., (1996) Thermodynamics of hydrogen bond and hydrophobic interactions in cyclodextrin complexes. Biophysical journal, 71 (4), 2144 -2154.
47. Asma Obaid, Arniza Khairani Mohd Jamil, Samikannu Prabu, Siti Munirah Saharin, Sharifah Mohamad. (2020) "Spectroscopic studies for the inclusion complexation of ketoprofen enantiomers with β-cyclodextrin", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 241:118674.
This work is licensed under a Creative Commons Attribution 4.0 International License.