• Salmiah Jamal Mat Rosid Universiti Sultan Zainal Abidin
  • Susilawati Toemen Universiti Teknologi Malaysia
  • Wan Azelee Wan Abu Bakar Universiti Teknologi Malaysia
  • Sarina Mat Rosid Universiti Teknologi Malaysia
  • Wan Nazwanie Wan Abdullah Universit Sains Malaysia
  • Siti Maisarah Aziz Universiti Sultan Zainal Abidin


Methanation reaction using carbon dioxide gas is one of favorable green technology to form methane gas by converting carbon dioxide in the presence of hydrogen. This technology needs the catalyst to achieve a higher catalytic activity. Therefore, a catalyst of Ru/Mn/Pr (5:30:65)/Al2O3 (RMP, 5:30:60) was prepared via wetness impregnation method and investigated on the effect of calcination temperatures with respect to catalytic performance using FTIR analysis. The RMP (5:30:60) catalyst calcined at 800oC was chosen as an excel catalyst with 96.9% of CO2 conversion and 45.1% CH4 formation at 350oC reaction temperature. From the EDX mapping, it can be observed that the distribution of all element is homogeneous at 800oC except Ru, O and Al at 900oC and 1000oC calcination temperature. The image from FESEM also shows the presence of some crystal shape on the catalyst surface. From the FTIR analysis, the peaks stretching and bending mode of O-H bonding decreased when the calcination temperature increased.


Anderson J.S. and Gallagher. (1963). The oxidation of praseodymium oxide. Part I chemisorptions on praseodymium oxide. Journal of the Chemical Society. 52-61.
Asif Iqbal M.M. Toemen S. Bakar, W.A.W.A. Razak F.I.A. Rosid S.J.M. Azelee N.I.W. (2020). Catalytic methanation over nanoparticle heterostructure of Ru/Fe/Ce/g-Al2O3 catalyst: Performance and characterization, Renewable Energy, 162, 513-524,
Branco J.B. da Silva R.P. and Ferreira A.C. (2020). Methanation of CO2 over Cobalt-Lanthanide Aerogels: Effect of Calcination Temperature. Catalysts, 10, 704; doi:10.3390/catal10060704
Coates J.P. (1998). ‘A review of sampling methods for infrared spectroscopy’ in Applied Spectroscopy: a compact reference for practitioners eds. J. Workman, A.W. Sprinsteem, Academic Press, New York. pp 49-91.
Ferro S. (2011). Physicochemical and Electrical Properties of Praseodymium Oxides, International Journal of Electrochemistry, 1-7,
Jianjun G. Lou H. Zhao H. Chai D. and Zheng X. (2004). Dry reforming of methane over nickel catalyst supported on magnesium aluminate spinels. Applied Catalysis A: General. 273(1-2) 75-82.
Ketzial J.S.S.J. Radhika D. and Nesaraj A.S. (2013). Low temperature preparation and physical characterization of doped BaCeO3 nanoparticles by chemical precipitation. International Journal of Industrial Chemistry. 4(18). 1-13.
Md Ali S. A. Hamid K. H. K. and Ismail K. N. (2017). Effect of calcination temperature on the structure and catalytic performance of 80Ni20CO/SiO2 catalyst for CO2 methanation. AIP Conference Proceedings, 1885, 020272.
Parathasarathi B. Rajamathi M. Hedge M.S. and Kamath P.V. (2000). Thermal behavior of hydroxides, hydroxysalt and hydrotalcites. Bulletin of Materials Science. 23(2). 141-145.
Rosid S.J.M. Toemen S. Bakar W.AW.A. Zamani A.H. Mokhtar W.N.A.W. (2019). Physicochemical characteristic of neodymium oxide-based catalyst for in-situ CO2/H2 methanation reaction, Journal of Saudi Chemical Society, 23(3), 284-293.
Rosid S.J.M. Bakar W.A.W.A. and Ali R. (2017). Optimization by Box-Behnken design of in-situ carbon dioxide conversion using lanthanum oxide. Malaysian Journal of Analytical Sciences. 21(4). 880-888
Rosid S.J.M. Bakar W.A.W.A. and Ali R. (2015). Optimization of Praseodymium Oxide Based Catalysts for Methanation Reaction of Simulated Natural Gas using Box-Behnken Design. Jurnal Teknologi 75(1):55-65. DOI: 10.11113/jt.v75.2669
Rostrup-Niclsen J.R. Pedersen K. Sehested J. (2007). High temperature methanation sintering and structure sensitivity. Applied Catalysis A: General. 330. 134-138.
Savva P. Goundani K. Vakros J. Bourikas K. Founzoula C. Vattis D. Lycourgthiotis A. Kordulis C. (2008). Benzene hydrogenation over Ni/Al2O3 catlyst prepared by conventional and sol-gel techniques. Applied Catalysis B: Environmental. 79(3). 199-207.
Schmitz P.J. Usmen R.K. Poters C.R. Graham G.W. and Mc Case R.W. (1993). Effect of calcination temperature on Al2O3-supported CeO2: Complementary from XRD and XPS. Applied Surface Science. 72. 181-187.
Sehested J. (2003). Sintering of steam reforming catalysts. Journal of Catalysis. 217(2). 417-426.
Wu H. Zou M. Guo L. Ma F. Mo W. Yu Y. Mian I. Liu J. Yin S. and Tsubaki N. (2020). Effects of calcination temperatures on the structure–activity relationship of Ni–La/Al2O3 catalysts for syngas methanation. RSC Advances. 10, 4166–4174.
How to Cite
MAT ROSID, Salmiah Jamal et al. CHARACTERISTIC OF PRASEODYMIUM OXIDE BASED CATALYST IN METHANATION: EFFECT CALCINATION TEMPERATURE. Journal of Academia, [S.l.], v. 9, n. 1, p. 49-55, apr. 2021. ISSN 2289-6368. Available at: <>. Date accessed: 20 may 2024.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.