FILL FACTOR AND POWER CONVERSION EFFICIENCY SIMULATION OF HETEROJUNCTION ORGANIC SOLAR CELLS (P3HT/PCBM) USING ZNO AND PEDOT:PSS AS INTERFACIAL LAYER
Abstract
This article provides the simulation of fill factor and power conversion efficiency of heterojunctions organic solar cells using ZnO as electron transport layer (ETL) and PEDOT:PSS as hole transport layer (HTL). Heterojunction organic solar cells is a light sensitive material that converts the solar energy to electrical energy resources. Nowadays, to build the heterojunction organic solar cell is challenging with optimise the ideal materials to produce the higher electrical energy. Therefore, the structural design of organic solar cells and the material selection that have important significance for improving the conversion efficiency of organic solar cells. The method of this project using simulation tools. The main analysis to improve high fill factor and power efficiency of heterojunction organic solar cells (P3HT:PCBM) using ZnO as buffer layer with the optimised light intensity. The thickness of ZnO layer is 20nm. As a result, the heterojunction organic solar cell (P3HT:PCBM) at 0.10 light intensity found that the fill factor is 68.736810% and the efficiency reaches 11.3%. Finally, it is suitable for heterojunction organic solar cell applications.
References
Banerjee, S., Gupta, S. K., Singh, A., & Garg, A. (2016). Buffer layers in inverted organic solar cells and their impact on the interface and device characteristics: An experimental and modeling analysis. Organic Electronics: Physics, Materials, Applications, 37, 228–238. https://doi.org/10.1016/j.orgel.2016.06.031
Bendenia, C., Merad-dib, H., Bendenia, S., & Hadri, B. (2018). Optik Numerical modelisation of ZnO interfacial layer on P3HT : PCBM based organic photovoltaic bulk heterojunction devices. Optik - International Journal for Light and Electron Optics, 174(August), 167–172. https://doi.org/10.1016/j.ijleo.2018.08.038
Frankenstein, H., Leng, C. Z., Losego, M. D., & Frey, G. L. (2019). Atomic layer deposition of ZnO electron transporting layers directly onto the active layer of organic solar cells. Organic Electronics, 64(October 2018), 37–46. https://doi.org/10.1016/j.orgel.2018.10.002
Guo, T., Li, M., Qiao, Z., Yu, L., Zhao, J., Feng, N., & Wang, H. (2018). Efficient cascade multiple heterojunction organic solar cells with inverted structure. Superlattices and Microstructures, 117, 215–219. https://doi.org/10.1016/j.spmi.2018.03.015
Gupta, S. K., Sharma, A., Banerjee, S., Gahlot, R., Aggarwal, N., Deepak, & Garg, A. (2013). Understanding the role of thickness and morphology of the constituent layers on the performance of inverted organic solar cells. Solar Energy Materials and Solar Cells, 116, 135–143. https://doi.org/10.1016/j.solmat.2013.03.027
Liu, Z., He, T., Wang, H., Jain, S. M., Liu, K., Yang, J., Yuan, M. (2018). Improvement in the performance of inverted planar perovskite solar cells via the CH 3 NH 3 PbI 3-x Cl x : ZnO bulk heterojunction. Journal of Power Sources, 401(August), 303–311. https://doi.org/10.1016/j.jpowsour.2018.09.007
Nolasco, J. C., Castro-carranza, A., León, Y. A., Briones-jurado, C., Gutowski, J., & Parisi, J. (2019). Understanding the open circuit voltage in organic solar cells on the basis of a, 184(February), 610–619. https://doi.org/10.1016/j.solener.2019.04.031
Sahdan, M. Z., Malek, M. F., Alias, M. S., Kamaruddin, S. A., & Norhidayah, C. A. (2015). Optik Fabrication of inverted bulk heterojunction organic solar cells based on conjugated P3HT : PCBM using various thicknesses of ZnO buffer layer. Optik - International Journal for Light and Electron Optics, 126(6), 645–648. https://doi.org/10.1016/j.ijleo.2015.01.017
Urbańczyk, M., Jakubik, W., Maciak, E., Lofgran, S. C., Alfonso, E., Olaya, J., … Http://users.wfu.edu/ucerkb/Nan242/L07-Sputtering_a.pdf. (1977). High-efficiency solar cell with earth-abundant liquid-processed absorber. Journal of Electronic Materials, 23(7), 11–12.