Numerical Analysis of the Conductivity on Yttria-Stabilized Zirconia toward Performance of Solid Oxide Fuel Cell

  • Wee Choon Tan Universiti Malaysia Perlis
  • Eng Aik Lim
  • Thean Hin Teoh

Abstract

The solid oxide fuel cell (SOFC), a highly efficient energy conversion device renowned for its low pollutant emissions and superior fuel adaptability, exhibits performance intricacies illuminated through its current-voltage curve. The performance of an SOFC is highly dependent on ionic conductivity within the ionic phase in anode, electrolyte and cathode within the cell. This study focuses on the critical examination of yttria-stabilized zirconia (YSZ) ionic conductivity models, with a specific emphasis on the influence of the pre-exponential factor (A) and activation energy (Ea ). A comprehensive literature on the available YSZ ionic conductivity models is conducted. Both A (range 0.1 x 104 to 4.0 x 104) and Ea (range 9.0R x 103 to 14.0R x 103 kJ2 K-1) are numerically investigated and compared individually to the Bessette model of A = 3.4014 x 104 and Ea = 10.35R x 103 kJ2 K-1. R is the universal gas constant. The numerical analysis is conducted using an in-house developed quasi-3-dimensional SOFC model which treats the SOFC as a single layer of mesh across its thickness direction to greatly reduce its computational cost. It is found that the modified Bessette model with = 2.0 x 104 and Ea = 10.35R x 103 kJ2 K-1  shows the best agreement with the literature experimental results at 1023 K and 1073 K.

References

Aguiar, P., Adjiman, C. S., & Brandon, N. P. (2004). Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance. Journal of Power Sources, 138(1–2), 120–136. https://doi.org/10.1016/j.jpowsour.2004.06.040
Andersson, M., Yuan, J., & Sundén, B. (2013). SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants. Journal of Power Sources, 232, 42–54. https://doi.org/10.1016/j.jpowsour.2012.12.122
Bessette, N. F., Wepfer, W. J., & Winnick, J. (1995). A Mathematical Model of a Solid Oxide Fuel Cell. Journal of The Electrochemical Society, 142(11), 3792–3800. https://doi.org/10.1149/1.2048415
Bieberle, A., Meier, L. P., & Gauckler, L. J. (2001). The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes. Journal of The Electrochemical Society, 148(6), A646–A656. https://doi.org/10.1149/1.1372219
Bouwmeester, H. J. M., Den Otter, M. W., & Boukamp, B. A. (2004). Oxygen transport in La0.6Sr0.4Co1−y Fe y O3−δ. Journal of Solid State Electrochemistry, 8, 599–605. https://doi.org/10.1007/s10008-003-0488-3
Braun, R. J. (2002). Optimal Design and Operation of Solid Oxide Fuel Cell Systems for Small- scale Stationary Applications. PhD Thesis. United States. University of Wisconsin- Madison.
Brus, G., Iwai, H., Mozdzierz, M., Komatsu, Y., Saito, M., Yoshida, H., & Szmyd, J. S. (2017). Combining structural, electrochemical, and numerical studies to investigate the relation between microstructure and the stack performance. Journal of Applied Electrochemistry, 47(9), 979–989. https://doi.org/10.1007/s10800-017-1099-5
Brus, G., Iwai, H., Otani, Y., Saito, M., Yoshida, H., & Szmyd, J. S. (2015). Local evolution of triple phase boundary in solid oxide fuel cell stack after long-term operation. Fuel Cells, 15(3), 545–548. https://doi.org/10.1002/fuce.201500027
Buchaniec, S., Sciazko, A., Mozdzierz, M., & Brus, G. (2019). A Novel Approach to the Optimization of a Solid Oxide Fuel Cell Anode Using Evolutionary Algorithms. IEEE Access, 7, 34361–34372. https://doi.org/10.1109/ACCESS.2019.2904327
Chatrattanawet, N., Kheawhom, S., Chen, Y.-S., & Arpornwichanop, A. (2019). Design and Implementation of the Off-Line Robust Model Predictive Control for Solid Oxide Fuel Cells. In Processes (Vol. 7, Issue 12). https://doi.org/10.3390/pr7120918
Esquirol, A., Brandon, N. P., Kilner, J. A., & Mogensen, M. (2004). Electrochemical Characterization of La[sub 0.6]Sr[sub 0.4]Co[sub 0.2]Fe[sub 0.8]O[sub 3] Cathodes for Intermediate-Temperature SOFCs. Journal of The Electrochemical Society, 151(11), A1847–A1855. https://doi.org/10.1149/1.1799391
Evans, W. K., Rattanakornkan, K., Suksangpanomrung, A., & Charojrochkul, S. (2011). The simulations of tubular solid oxide fuel cells (SOFCs). Chemical Engineering Journal, 168(3), 1301–1310. https://doi.org/10.1016/J.CEJ.2011.02.034
Fergus, J. W. (2006). Electrolytes for solid oxide fuel cells. Journal of Power Sources, 162(1), 30–40. https://doi.org/10.1016/J.JPOWSOUR.2006.06.062
Ferguson, J. R., Fiard, J. M., & Herbin, R. (1996). Three-dimensional numerical simulation for various geometries of solid oxide fuel cells. Journal of Power Sources, 58(2), 109–122. https://doi.org/10.1016/0378-7753(95)02269-4
Figueiredo, F. M. L., & Marques, F. M. B. (2013). Electrolytes for solid oxide fuel cells. WIREs Energy and Environment, 2(1), 52–72. https://doi.org/https://doi.org/10.1002/wene.23
Iwai, H., Yamamoto, Y., Saito, M., & Yoshida, H. (2011). Numerical simulation of intermediate-temperature direct-internal-reforming planar solid oxide fuel cell. Energy, 36(4), 2225–2234. https://doi.org/10.1016/j.energy.2010.03.058
Kanno, D., Shikazono, N., Takagi, N., Matsuzaki, K., & Kasagi, N. (2011). Evaluation of SOFC anode polarization simulation using three-dimensional microstructures reconstructed by FIB tomography. Electrochimica Acta, 56(11), 4015–4021. https://doi.org/10.1016/j.electacta.2011.02.010
Lai, K., Koeppel, B. J., Choi, K. S., Recknagle, K. P., Sun, X., Chick, L. A., Korolev, V., & Khaleel, M. (2011). A quasi-two-dimensional electrochemistry modeling tool for planar solid oxide fuel cell stacks. Journal of Power Sources, 196(6), 3204–3222. https://doi.org/10.1016/j.jpowsour.2010.11.123
Matsuzaki, K., Shikazono, N., & Kasagi, N. (2011). Three-dimensional numerical analysis of mixed ionic and electronic conducting cathode reconstructed by focused ion beam scanning electron microscope. Journal of Power Sources, 196(6), 3073–3082. https://doi.org/10.1016/j.jpowsour.2010.11.142
Onaka, H., Iwai, H., Kishimoto, M., Saito, M., Yoshida, H., Brus, G., & Szmyd, J. S. (2016). Development of a charge-transfer distribution model for stack simulation of solid oxide fuel cells. Journal of Physics: Conference Series, 745(3), 032148. https://doi.org/10.1088/1742-6596/745/3/032148
Park, J., & Min, K. (2012). A quasi-three-dimensional non-isothermal dynamic model of a high-temperature proton exchange membrane fuel cell. Journal of Power Sources, 216, 152–161. https://doi.org/10.1016/J.JPOWSOUR.2012.05.054
Rizvandi, O. B., Jensen, S. H., & Frandsen, H. L. (2022). A modeling study of lifetime and performance improvements of solid oxide fuel cell by reversed pulse operation. Journal of Power Sources, 523, 231048. https://doi.org/10.1016/J.JPOWSOUR.2022.231048
Shi, Y., Li, C., & Cai, N. (2011). Experimental characterization and mechanistic modeling of carbon monoxide fueled solid oxide fuel cell. Journal of Power Sources, 196(13), 5526– 5537. https://doi.org/10.1016/J.JPOWSOUR.2011.02.013
Shikazono, N., Kanno, D., Matsuzaki, K., Teshima, H., Sumino, S., & Kasagi, N. (2010). Numerical Assessment of SOFC Anode Polarization Based on Three-Dimensional Model Microstructure Reconstructed from FIB-SEM Images. Journal of The Electrochemical Society, 157(5), B665. https://doi.org/10.1149/1.3330568
Tan, W. C., Iwai, H., Kishimoto, M., Brus, G., Szmyd, J. S., & Yoshida, H. (2018). Numerical analysis on effect of aspect ratio of planar solid oxide fuel cell fueled with decomposed ammonia .Journal of Power Sources, 384, 367–378. https://doi.org/10.1016/j.jpowsour.2018.03.011
Tan, W. C., Iwai, H., Kishimoto, M., & Yoshida, H. (2018). Quasi-three-dimensional numerical simulation of a solid oxide fuel cell short stack: Effects of flow configurations including air-flow alternation. Journal of Power Sources, 400, 135–146. https://doi.org/10.1016/j.jpowsour.2018.08.002
Tan, W. C., Iwai, H., Kishimoto, M., & Yoshida, H. (2019a). Implementation of multi- component dusty-gas model for species transport in quasi-three-dimensional numerical analysis of solid oxide fuel cell. Part I: hydrogen fuel. IOP Conference Series: Materials Science and Engineering, 670(1), 012021. https://doi.org/10.1088/1757- 899X/670/1/012021
Tan, W. C., Iwai, H., Kishimoto, M., & Yoshida, H. (2019b). Implementation of multi- component dusty-gas model for species transport in quasi-three-dimensional numerical

analysis of solid oxide fuel cell. Part II: direct ammonia fuel. IOP Conference Series: Materials Science and Engineering, 670(1), 012022. https://doi.org/10.1088/1757- 899X/670/1/012022
Tan, W. C., Lim, E. A., Abd Rahman, H., Abdul Samat, A., & Oon, C. S. (2023). Numerical analysis on the anode active thickness using quasi-three-dimensional solid oxide fuel cell model International Journal of Hydrogen Energy. https://doi.org/10.1016/J.IJHYDENE.2023.01.361
Xu, Q., Xia, L., He, Q., Guo, Z., & Ni, M. (2021). Thermo-electrochemical modelling of high temperature methanol-fuelled solid oxide fuel cells. Applied Energy, 291, 116832. https://doi.org/10.1016/J.APENERGY.2021.116832
Yurkiv, V. (2014). Reformate-operated SOFC anode performance and degradation considering solid carbon formation: A modeling and simulation study. Electrochimica Acta, 143, 114– 128. https://doi.org/10.1016/j.electacta.2014.07.136
Zakaria, Z., Abu Hassan, S. H., Shaari, N., Yahaya, A. Z., & Boon Kar, Y. (2020). A review on recent status and challenges of yttria stabilized zirconia modification to lowering the temperature of solid oxide fuel cells operation. International Journal of Energy Research, 44(2), 631–650. https://doi.org/https://doi.org/10.1002/er.4944
Zheng, Y., Zhao, C., Wu, T., Li, Y., Zhang, W., Zhu, J., Geng, G., Chen, J., Wang, J., Yu, B., & Zhang, J. (2020). Enhanced oxygen reduction kinetics by a porous heterostructured cathode for intermediate temperature solid oxide fuel cells. Energy and AI, 2, 100027. https://doi.org/10.1016/J.EGYAI.2020.100027
Published
2024-03-01
How to Cite
TAN, Wee Choon; LIM, Eng Aik; TEOH, Thean Hin. Numerical Analysis of the Conductivity on Yttria-Stabilized Zirconia toward Performance of Solid Oxide Fuel Cell. International Journal of Advanced Research in Engineering Innovation, [S.l.], v. 6, n. 1, p. 24-39, mar. 2024. Available at: <https://myjms.mohe.gov.my/index.php/ijarei/article/view/25207>. Date accessed: 12 sep. 2024.
Section
Articles