Investigation on the Compaction Characteristic of Sabah Peat Soil Stabilised with Eco-Processed Pozzolan (EPP)
Abstract
Peat soil was defined as the highly organic surface layer derived primarily from plant remains. Peat, on the other hand, was the subsurface of wetland systems, consisting of unconsolidated superficial layers with high non-crystalline colloid (humus) content. It has a dark brown to black colour, an organic odour, and a spongy consistency in general. Peat soil was mainly found in swamp areas. It was a partly decomposed organic layer of soil generated primarily from plant matter that has collected under waterlogging, high acidity, oxygen scarcity, and nutritional insufficiency. Peat soils have a low shear strength of 5 to 20 kPa, high compressibility of 0.9 to 1.5, and a high moisture content of >100%. Peat also has a lot of deformation, a lot of magnitudes, and many screens, and it contains a lot of organic stuff (>75%). The purpose of the study was to prognosticate the potential of Eco-Processed Pozzolan (EPP) as peat soil stabilisation material with improved technique and its consequence of the methods, which was the peat soils index properties and analyse the characteristics of the peat soil stabilisation before and after treatment using Eco-Processed Pozzolan (EPP). The undistributed soil sample was taken 0.5m underground from the surface in cylindrical shape 150 mm high and 90 mm inner diameter. The soil was mixed with 10%, 20%, and 30% Eco-Processed Pozzolan (EPP) then compacted (compaction test) in a metal mould of internal diameter 105 mm using a 2.5 kg rammer, of 50 mm diameter, free-falling from 300 mm above the top of the soil Three layers compaction of approximately equal depth and 27 blows spread evenly over the soil surface for each layer. The expected result to accomplish the main purpose was to prognosticate the potential Eco-Processed Pozzolan (EPP) as peat soil stabilization material with improvement technique and its consequence of the methods. According to the findings, peat soil treated with EPP will transform its qualities from peat to usable soil. However, the presence of moisture will reduce the mixture's ability. According to the findings of this study, the optimum EPP for stabilising peat soils was 30-40%.
References
Adon, R., Bakar, I., Wijeyesekera, D. C., & Zainorabidin, A. (2013). Overview of the Sustainable Uses of Peat Soil in Malaysia with Some Relevant Geotechnical Assessments. International Journal of Integrated Engineering, 4(4).
Ahmad, A., Sutanto, M. H., Ahmad, N. R., Bujang, M., & Mohamad, M. E. (2021). The Implementation of Industrial Byproduct in Malaysian Peat Improvement: A Sustainable
Ashraf E. Abdel-Salam (2018). Stabilization of peat soil using locally admixture, HBRC Journal, 14(3), 294-299. DOI: 10.1016/j.hbrcj.2016.11.004
Adnan, Z., & Habib Musa, M. (2016). A geotechnical exploration of Sabah peat soil: Engineering classifications and field surveys. Electronic Journal of Geotechnical Engineering, 21(20), 6671–6687.
Ahmad, A., Sutanto, M. H., Ahmad, N. R., Bujang, M., & Mohamad, M. E. (2021). The Implementation of Industrial Byproduct in Malaysian Peat Improvement: A Sustainable Soil Stabilization Approach. Materials, 14(23), 7315. https://doi.org/10.3390/ma14237315
Bahadori, H., Hasheminezhad, A., & Taghizadeh, F. (2019). Experimental Study on Marl Soil Stabilization Using Natural Pozzolans. Journal of Materials in Civil Engineering, 31(2), 04018363. https://doi.org/10.1061/(asce)mt.1943-5533.0002577
Benhelal, E., Zahedi, G., Shamsaei, E., & Bahadori, A. (2013). Global strategies and potentials to curb CO2 emissions in cement industry. Journal of Cleaner Production, 51, 142–161.
Boobathiraja, S., Balamurugan, P., Dhansheer, M., & Adhikari, A. (2014). Study on strength of peat soil stabilised with cement and other pozzolanic materials. International Journal of Civil Engineering Research, 5(4), 431-438.
Bujang, B. K. (2004) Organic and peat soils engineering. Universiti Putra Malaysia Press.
Chindaprasirt, P., Kanchanda, P., Sathonsaowaphak, A., & Cao, H. T. (2007). Sulfate resistance of blended cements containing fly ash and rice husk ash. Construction and Building Materials, 21(6), 1356–1361
Deboucha S., Hashim R., & Alwi A. (2008). Engineering properties of stabilized tropical peat soils. Electron. J. Geotechn. Eng., 13E
Dennis Jones & Christian Brischke (2017). Nonwood bio-based materials Performance of Bio-based Building Materials, Woodhead Publishing, 2017, Pages 97-186,
Edil T. B., & Wang, X. (2000). Shear strength and K0 of peats and organic soils. In Geotechnics of High-Water Content Materials (Edil TB and Fox PJ (eds)). ASTM International, West Conshohocken, PA, USA, ASTM STP 1374, pp. 209–225.
Farahiyah, R., Rahman, A., Asrah, H., Rizalman, A., Mirasa, A., & Rajak, M. (2020). Study of Eco-Processed Pozzolan Characterization as Partial Replacement of Cement. Journal of Environmental Treatment Techniques, 2020(3), 967–970.
Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498
Global distribution of peatlands | GRID-Arendal. (2018). Global distribution of peatlands | GRID-Arendal.
Gumbricht, T., Roman‐Cuesta, R. M., Verchot, L., Herold, M., Wittmann, F., Householder, E., Herold, N., & Murdiyarso, D. (2017). An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Global Change Biology 23(9). 3581–3599.
Gunarso, P., Hartoyo, M., Agus, F., & Killeen, T. (2013). Oil palm and land use change in Indonesia, Malaysia and Papua New Guinea. Report from the technical Panels ` 92 of the 2° Greenhouse Gas Working Group of Roundtable on sustainable Palm oil (RSPO).
Hua, L. J., Mohd, S., Ahmad Tajudin, S. A., Ali Mohamad, S. N., Bakar, I., Mohd Masirin, M. I., … Mahmood, A. A.-W. (2016). Construction of Infrastructure on Peat: Case Studies and Lessons Learned. MATEC Web of Conferences, 47, 03014. https://doi.org/10.1051/matecconf/20164703014
Huat, B.B.K., Prasad, A., Asadi, A., & Kazemian, S. (2014). Geotechnics of Organic Soils and Peat (1st ed.).
Huat, B. B., Kazemian, S., Prasad, A., & Barghchi, M. (2011). State of an art review of peat: General perspective. International Journal of Physical Sciences, 6(8), 1988-1996
Hurley, M. J., Gottuk, D. T., Hall, J. R. Jr, Harada, K., Kuligowski, E. D., & Puchovsky, M. (2015) SFPE handbook of fire protection engineering. Springer, Berlin
Jr, K., Iglesias, E., & Karatas, I. (2021). Biopolymer soil stabilization for wind erosion control. Iospress.nl, 881–884. https://doi.org/10.3233/978-1-60750-031-5-881
Katz, L. E., Rauch, A. F., Liljestrand, H. M., Harmon, J. S., Shaw, K. S., & Albers, H. (2001). Mechanisms of soil stabilization with liquid ionic stabilizer. Transportation Research Record, 1757(1), 50-57.
Kazemian, S., Huat B. B. K., Prasad A., & Barghchi M. (2011). A state of art review of peat: geotechnical engineering perspective. Int J Phys Sci, 6(8), 1974–1981.
Kern, J., Tammeorg, P., Shanskiy, M., Sakrabani, R., Knicker, H., Kammann, C., … Glaser, B. (2017). Synergistic Use of Peat And Charred Material In Growing Media – An Option To Reduce The Pressure On Peatlands? Journal Of Environmental Engineering and Landscape Management, 25(2), 160–174. https://doi.org/10.3846/16486897.2017. 1284665
Lestari, P., Muthmainnah, F., & Permadi, D. A. (2020). Characterization of carbonaceous compounds emitted from Indonesian surface and sub surface peat burning. Atmos Pollut Res 11(9),1465–1472. https://doi.org/10.1016/j.apr.2020.06.001
Lin, S., Sun, P., & Huang, X. (2019) Can peat soil support a flaming wildfire? Int J Wildland Fire 28. https://doi.org/10.1071/WF19018
Loh, S. K., James, S., Ngatiman, M., Cheong, K. Y., Choo, Y. M., & Lim, W. S. (2013). Enhancement of palm oil refinery waste - Spent bleaching earth (SBE) into bio-organic fertilizer and their effects on crop biomass growth. Industrial Crops and Products, 49, 775–781.
Mesri, G., & Ajlouni, M. (2007). Engineering properties of fibrous peats. Journal of Geotechnical Geoenvironmental Engineering. 133(7). 851-866.
Miettinen, J., Shi, C., & Liew, S. C. (2011). Deforestation rates in insular Southeast Asia between 2000 and 2010. Global Change Biology. 17(7). 2261–2270.
Mesner, N. (2014). Stream Side Science Lesson Plan: Appendices.
Mahmod, A. A. W., Mohd, S., Masirin, M. I. M., Tajudin, S. A. A., Bakar, I., Zainorabidin, A., ... & Hua, L. J. (2016). Construction of buildings on peat: Case Studies and Lessons Learned. In MATEC Web of Conferences (Vol. 47, p. 03013). EDP Sciences.
Nikookar, M., Nikookar, H., & Arabani, M. (2013). Peat soil stabilizing by hydrated lime. In 7th National Congress on Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran (pp. 1-7).
Nurul Irah Fazirah Sapar, Siti Jahara Matlan, Habib Musa Mohamad, Rohaya Alias & Aniza Ibrahim (2020). A Study on Physical and Morphological Characteristics of Tropical Peat in Sabah, International Journal of Advanced Research in Engineering and Technology, 11(11), pp. 542-553.
O’Kelly, B. C., Vardanega, P. J., & Haigh, S. K. (2018). Use of fall cones to determine Atterberg limits: a review. Géotechnique, 68(10), 843–856. https://doi.org/10.1680/jgeot.17.r.039
Olaniyan, O. S., Olaoye, R. A., Okeyinka, O. M., & Olaniyan, D. B. (2011). Soil stabilization techniques using sodium hydroxide additives. International Journal of Civil and Environmental Engineering IJCEE-IJENS, 11(6), 9-22.
Osman, K. T. (2018). Peat Soils. Management of Soil Problems, 145–183. https://doi.org/10.1007/978-3-319-75527-4_7
P. K. Kolay, M. R. Aminur, S. N. L. Taib, M. I. S., & Mohd Zain. (2011), Stabilization of Tropical Peat Soil from Sarawak with Different Stabilizing Agents. Geotech Geol Eng (2011) 29:1135–1141 DOI 10.1007/s10706-011-9441-x
Pashaki, M. K., Nikookar, M., Mirmoa’zen, S. M., & Arabani, M. (2017). Geomechanical properties of peat stabilized with cement and sand. International Journal of Advanced and Applied Sciences, 4(9), 19-25.
Rahgozar, M. A., Saberian, M., & Li, J. (2018). Soil stabilization with non-conventional eco-friendly agricultural waste materials: An experimental study. Transportation Geotechnics, 14, 52–60. https://doi.org/10.1016/j.trgeo.2017.09.004
Raihana Farahiyah Abd Rahman1, Hidayati Asrah, Ahmad Nurfaidhi Rizalman, Abdul K. Mirasa, M A A Rajak, 2020, Study of Eco-Processed Pozzolan Characterization as Partial Replacement of Cement.J. Environ. Treat. Tech. ISSN: 2309-1185, Journal web link: http://www.jett.dormaj.com
Razali, S. N. M., Bakar, I., & Zainorabidin, A. (2013). Behaviour of Peat Soil in Instrumented Physical Model Studies. Procedia Engineering, 53, 145–155. https://doi.org/10.1016/j.proeng.2013.02.020
Rein, G. (2013). Smouldering fires and natural fuels. In C. M. Belcher (Ed.), Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (pp. 15-33)
Rieley J., Page S. (2016) Tropical Peatland of the World. In: Osaki M., Tsuji N. (eds) Tropical Peatland Ecosystems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55681-7_1
Serban C. Moldoveanu (2021). Analytical Pyrolysis of Natural Organic Polymers (2nd Edition). https://www.sciencedirect.com/science/article/pii/B978012818571100011X
Soil Stabilization Approach. Materials 2021, 14, 7315. https://doi.org/10.3390/ma14237315
Sridharan, A., & Nagaraj, H. B. (2005). Plastic Limit and Compaction Characteristics of Finegrained Soils. Proceedings of the Institution of Civil Engineers-Ground Improvement. 9(1), 17–22. doi:10.1680/grim.2005.9.1.17.
Stepanova, V. A., Pokrovsky, O. S., Viers, J., Mironycheva-Tokareva, N. P., Kosykh, N. P., & Vishnyakova, E. K. (2015). Elemental composition of peat profiles in western Siberia: Effect of the micro-landscape, latitude position and permafrost coverage. Applied Geochemistry, 53, 53-70.
Tangchirapat, W., Saeting, T., Jaturapitakkul, C., Kiattikomol, K., & Siripanichgorn, A. (2007). Use of waste ash from palm oil industry in concrete. Waste Management, 27(1), 81–88.
Turetsky M. R., Benscoter B., Page S., Rein G., Van Der Werf G. R., & Watts A. (2015) Global vulnerability of peatlands to fire and carbon loss. Nat Geosci, 8(1),11–14
Veloo, R., Ranst, E. van, & Selliah, P. (2015). Peat Characteristics and its Impact on Oil Palm Yield. NJAS - Wageningen Journal of Life Sciences, 72-73, 33–40. https://doi.org/10.1016/j.njas.2014.11.001
Viji, V. K., K. F. Lissy, C. Sobha, & M. A. Benny. (2013). Predictions on Compaction Characteristics of Fly Ashes Using Regression Analysis and Artificial Neural Network Analysis. International Journal of Geotechnical Engineering, 7(3), 282–291. doi:10.1179/1938636213Z.00000000036.
W, J. A., & R, S. J. (2021). FACTORS INFLUENCING COMPACTION TEST RESULTS. Highway Research Board Bulletin, (319).
What is peat? - International Peatland Society. (2019, July 2). Retrieved November 16, 2021, from International Peatland Society website: https://peatlands.org/peat/peat/
Xu, J., Morris, P. J., Liu, J., & Holden, J. (2017). PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena. 160. 134-140.
Youventharan Duraisamy, Bujang B. K. Huat, & Aziz, A. A. (2007, April). Methods of Utilizing Tropical Peat Land for Housing Scheme. Retrieved November 16, 2021,
Yulindasari, S., Anis, S., Wiwik, R., & Hanafiah. (2019). Effect of Temperature nd heating time variation on characteristics of fibrous peat soils. IOP Conference Series Materials Science and Engineering. 620.
Zainorabidin & Habib. (2016). A Geotechnical Exploration of Sabah Peat Soil: Engineering Classifications and Field Surveys. Vol. 21 [2016], Bund. 20
Zakri Abdul Hamid. (2019, February 10). Peatlands threatened. NST Online, New Straits Times Retrieved November 14, 2021, www.nst.com.my/opinion/columnists/2019/02/459026/ peatlands-threatened
Zuber, S. S., Kamarudin, H., Abdullah, M. M., & Binhussain, M. (2013). Review on soil stabilization techniques. Australian Journal of Basic and Applied Sciences, 7(5), 258-265.
Zambri, N. M., & Ghazaly, Z. M. (2018). Peat soil stabilization using lime and cement. In E3S Web of Conferences (Vol. 34, p. 01034). EDP Sciences.
Zulkifley, M. T. M., Ng, T. F., Raj, J. K., Hashim, R., Ghani, A., Shuib, M. K., & Ashraf, M. A. (2013). Definitions and engineering classifications of tropical lowland peats. Bulletin of Engineering Geology and the Environment, 72(3-4), 547–553. https://doi.org/10.1007/ s10064-013-0520-5