Electrical Characterization of Graphene Nanoparticles Conductive Ink using Thermoplastic Polyurethane (TPU) Substrate

  • Hartini Saad
  • Ahmad Noor Syimir Fizal
  • Mohd Azli Salim
  • Muhd Ridzuan Mansor
  • Ahmad Naim Ahmad Yahaya

Abstract

Conductive ink is used as interconnecting tracks to create conductive paths. This research main objective is to utilised composite materials for conductive ink which to enhanced the production of making conductive ink which has good engineering properties in terms of electrical conductivity and cleaner productions. Thermoplastics viscous paste used as conductive materials to enlarge the capability of conductive ink to conducts electricity. The conductive ink applications offer many opportunities of carbon nanomaterial purposely for printed, stretchable and flexible electronics. Graphene nanoparticles conductive ink used as the connection material, fabricated on thermoplastic polyurethane (TPU) using manual stencil method for straight line, curve, square and zigzag pattern to investigate the effect of sheet resistivity for all the pattern state above. The samples used fix circuit width of 1mm, 2mm and 3mm. The ASTM F390 four-point probe used to measure the values of sheet resistivity. Results of this study displayed that 1 mm width samples provided the lowest value of sheet resistivity while, the higher values was displayed by 2 mm width samples nearly all the patterns.

References

Abu-Khalaf, J. M., Al-Ghussain, L., & Al-Halhouli, A. (2018). Fabrication of stretchable circuits on polydimethylsiloxane (PDMS) pre-stretched substrates by inkjet printing silver nanoparticles. Materials, 11(12), 1–17. https://doi.org/10.3390/ma11122377
Agcayazi, T., Chatterjee, K., Bozkurt, A., & Ghosh, T. K. (2018). Flexible Interconnects for Electronic Textiles. Advanced Materials Technologies, 3(10), 1–32. https://doi.org/10.1002/admt.201700277
Al-Halhouli, A., Qitouqa, H., Alashqar, A., & Abu-Khalaf, J. (2018). Inkjet printing for the fabrication of flexible/stretchable wearable electronic devices and sensors. Sensor Review, 38(4), 438–452. https://doi.org/10.1108/SR-07-2017-0126
Alemour, B., Yaacob, M. H., Lim, H. N., & Hassan, M. R. (2018). Review of electrical properties of graphene conductive composites. International Journal of Nanoelectronics and Materials, 11(4), 371–398.
Deplancke, T., Lame, O., Barrau, S., Ravi, K., & Dalmas, F. (2017). Impact of carbon nanotube prelocalization on the ultra-low electrical percolation threshold and on the mechanical behavior of sintered UHMWPE-based nanocomposites. Polymer, 111, 204–213. https://doi.org/10.1016/j.polymer.2017.01.040
Fernandes, I. J., Aroche, A. F., Schuck, A., Lamberty, P., Peter, C. R., Hasenkamp, W., & Rocha, T. L. A. C. (2020). Silver nanoparticle conductive inks: synthesis, characterization, and fabrication of inkjet-printed flexible electrodes. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-65698-3
Haghgoo, M., Ansari, R., Hassanzadeh-Aghdam, M. K., & Nankali, M. (2019). Analytical formulation for electrical conductivity and percolation threshold of epoxy multiscale nanocomposites reinforced with chopped carbon fibers and wavy carbon nanotubes considering tunneling resistivity. Composites Part A: Applied Science and Manufacturing, 126(August), 105616. https://doi.org/10.1016/j.compositesa.2019.105616
Haque, A., Mamun, M. A. Al, Taufique, M. F. N., Karnati, P., & Ghosh, K. (2018). Large Magnetoresistance and Electrical Transport Properties in Reduced Graphene Oxide Thin Film. IEEE Transactions on Magnetics, 54(12), 1–9. https://doi.org/10.1109/TMAG.2018.2873508
Kargar, F., Barani, Z., Salgado, R., Debnath, B., Lewis, J. S., Aytan, E., … Balandin, A. A. (2018). Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers. ACS Applied Materials and Interfaces, 10(43), 37555–37565. https://doi.org/10.1021/acsami.8b16616
Khuzaimah, S., Amin, M., Mansor, M. R., Ismail, N., Salim, M. A., & Azmmi, N. (2018). Sheet Resistivity of Square-Shape Flexible Electronic Circuit at Varying Circuit Width.
Konsta-Gdoutos, M. S., Metaxa, Z. S., & Shah, S. P. (2010). Highly dispersed carbon nanotube reinforced cement based materials. Cement and Concrete Research, 40(7), 1052–1059. https://doi.org/10.1016/j.cemconres.2010.02.015
Kumar, S., Gupta, T. K., & Varadarajan, K. M. (2019). Strong, stretchable and ultrasensitive MWCNT/TPU nanocomposites for piezoresistive strain sensing. Composites Part B: Engineering, 177(March), 107285. https://doi.org/10.1016/j.compositesb.2019.107285
Li, D., Lai, W. Y., Zhang, Y. Z., & Huang, W. (2018). Printable Transparent Conductive Films for Flexible Electronics. Advanced Materials, 30(10), 1–24. https://doi.org/10.1002/adma.201704738
Mei, S., Zhang, X., Ding, B., Wang, J., Yang, P., She, H., … Fu, P. (2021). 3D-Printed thermoplastic polyurethane/graphene composite with porous segregated structure: Toward ultralow percolation threshold and great strain sensitivity. Journal of Applied Polymer Science, 138(14), 1–11. https://doi.org/10.1002/app.50168
Phillips, C., Al-Ahmadi, A., Potts, S. J., Claypole, T., & Deganello, D. (2017). The effect of graphite and carbon black ratios on conductive ink performance. Journal of Materials Science, 52(16), 9520–9530. https://doi.org/10.1007/s10853-017-1114-6
Ram, R., Khastgir, D., & Rahaman, M. (2019). Electromagnetic interference shielding effectiveness and skin depth of poly(vinylidene fluoride)/particulate nano-carbon filler composites: prediction of electrical conductivity and percolation threshold. Polymer International, 68(6), 1194–1203. https://doi.org/10.1002/pi.5812
Roberson, D. A., Wicker, R. B., Murr, L. E., Church, K., & MacDonald, E. (2011). Microstructural and process characterization of conductive traces printed from Ag particulate inks. Materials, 4(6), 963–979. https://doi.org/10.3390/ma4060963
Saad, H., Salim, M. A., Azmmi Masripan, N., Saad, A. M., & Dai, F. (2020). Nanoscale graphene nanoparticles conductive ink mechanical performance based on nanoindentation analysis. International Journal of Nanoelectronics and Materials, 13(Special Issue ISSTE 2019), 439–448.
Sandler, J. K. W., Kirk, J. E., Kinloch, I. A., Shaffer, M. S. P., & Windle, A. H. (2003). Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer, 44(19), 5893–5899. https://doi.org/10.1016/S0032-3861(03)00539-1
Wan, Y. J., Li, G., Yao, Y. M., Zeng, X. L., Zhu, P. L., & Sun, R. (2020). Recent advances in polymer-based electronic packaging materials. Composites Communications, 19(November 2019), 154–167. https://doi.org/10.1016/j.coco.2020.03.011
Yoonessi, M., Gaier, J. R., Sahimi, M., Daulton, T. L., Kaner, R. B., & Meador, M. A. (2017). Fabrication of Graphene-Polyimide Nanocomposites with Superior Electrical Conductivity. ACS Applied Materials and Interfaces, 9(49), 43230–43238. https://doi.org/10.1021/acsami.7b12104
Zhang, Z., Zhang, J., Li, S., Liu, J., Dong, M., Li, Y., … Guo, Z. (2019). Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Composites Part B: Engineering, 176(July). https://doi.org/10.1016/j.compositesb.2019.107338
Published
2021-08-01
How to Cite
SAAD, Hartini et al. Electrical Characterization of Graphene Nanoparticles Conductive Ink using Thermoplastic Polyurethane (TPU) Substrate. International Journal of Advanced Research in Engineering Innovation, [S.l.], v. 3, n. 2, p. 58-68, aug. 2021. Available at: <https://myjms.mohe.gov.my/index.php/ijarei/article/view/14550>. Date accessed: 11 sep. 2024.
Section
Articles