Robeson’s Upperbound-Oriented Enhancement of Performance of Hollow Fiber Carbon Membrane for H2/N2 Ideal Separation

  • Jaya, M. A. T.
  • Jalani, M.A.
  • Yusop, M. F. M.
  • Gonawan, F. N.
  • Nizam, M.K.
  • Ismail, A. F.
  • Ahmad, M. A.

Abstract

Poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) was successfully converted into hollow fiber carbon membrane for H2/N2 separation study. The ideal separation parameters were enhanced by tuning the pyrolysis temperature, heating rate, and thermal soak time utilizing the Robeson’s 2008 upperbound and commercial boundary to obtain maximum balanced point between permeability and ideal selectivity. Using this approach, the optimum H2 permeability and H2/N2 ideal selectivity were 2868 Barrer and 586, respectively. SEM images depicted the surface of the PPO and carbon membrane were both dense, non-porous, symmetrical, and homogeneous. The estimated thickness of the carbon membrane was 14-15 µm. The permeability study indicated that the transport mechanism of the H2 across the membrane layer was dominated by molecular sieving. Excessively high or very low pyrolysis temperature reduced the H2 permeability and H2/N2 ideal selectivity. The H2/N2 ideal selectivity decreased against increasing heating rate as the H2 and N2 permeabilities increased significantly. Thermal soak time was highly effective in increasing the H2 permeability and H2/N2 ideal selectivity. Both H2 permeability and H2/N2 permselectivity from binary test was significantly lower than the ideal separation values due to competitive gas transport through the membrane pore which was completely dominated by the larger N2.

References

1. Ismail, A., & David, L. (2001). A review on the latest development of carbon membranes for gas separation. Journal of Membrane Science, 193, 1-18.
2. Koros, W. J. & Mahajan R. (2000). Pushing the limits on possibilities for large scale gas separation: which strategies? Journal of Membrane Science, 175, 181-196.
3. White, L. S., Blinka, T. A., Kloczewski, H. A. & Wang, I. (1995). Properties of a polyimide gas separation membrane in nautral gas streams. Journal of Membrane Science, 103, 73-82.
4. Bhide, B. D. & Stern, S. A. (1993). Membrane processes for the removal of acid gases from natural gas. I. Process configuration and optimization of operating conditions, Journal of Membrane Science, 81, 209-237.
5. Kim Y. K., Park, H. B. & Lee, Y. M. (2003). Carbon molecular sieve membrane derived from metal-substituted sulfonated polyimide and their gas separation properties, Journal of Membrane Science, 226,145-158.
6. Hatori, H., Yamada, Y., & Shiraishi, M. (1992). Preparation of macroporous carbon films from polyimide by phase-inversion method. Carbon, 30(2), 303-304.
7. Suda, H., & Haraya, K. (1995). Molecular sieving effect of carbonized Kapton polyimide membrane. Journal of the Chemical Society, Chemical Communications, 1179-1180.
8. Jones, C., & Koros, W. (1994). Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon, 32(8), 1419-1425.
9. Geiszler, V., & Koros, W. (1996). Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties. Industrial and Engineering Chemistry Research, 35, 2999-3003.
10. Ma, X., Lin, Y., Wei, X., & Kniep, J. (2016). Ultrathin carbon molecular sieve membrane for propylene/propane separation. AlChE Journal, 62(2), 491-499.
11. Hayashi, J., Mizuta, H., Yamamoto, M., Kusakabe, K., & Morooka, S. (1997). Pore size control of carbonized BPDA-pp'ODA polyimide membrane by chemical vapor deposition of carbon. Journal of Membrane Science, 124, 243-251.
12. Fuertes, A., & Centeno, T. (1998). Preparation of supported asymmetric carbon molecular sieve membranes. Journal of Membrane Science, 144, 105-111.
13. Okamoto, K., Kawamura, S., Yoshino, M., Kita, H., Hirayama, Y., Tanihara, N., & Kusuki, Y. (1999). Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane. Industrial and Engineering Chemistry Research, 38, 4424- 4432.
14. Sazali, N., Salleh, W., Nordin, N., Harun, Z., & Ismail, A. (2015). Matrimid-based carbon tubular membranes: The effect of the polymer composition. Journal of Applied Polymer Science.
15. Rao, M., & Sircar, S. (1993). Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. Journal of Membrane Science, 85, 253-264.
16. Chen, Y., & Yang, R. (1994). Preparation of carbon molecular sieve membrane and diffusion of binary mixtures in the membrane. Industrial and Engineering Chemistry Research, 33, 3146- 3153.

17. Acharya, M., Raich, B., Foley, H., Harold, M., & Lerou, J. (1997). Metal-supported carbogenic molecular sieve membranes: Synthesis and Applications. Industrial and Engineering Chemistry Research, 36, 2924-2930.
18. Katsaros, F., Steriotis, T., Stubos, A., Mitropoulos, A., Kanellopoulos, N., & Tennison, S. (1997). High pressure gas permeability of microporous carbon membranes. Microporous Materials, 8, 171-176.
19. Centeno, T., & Fuertes, A. (1999). Supported carbon molecular sieve membranes based on a phenolic resin. Journal of Membrane Science, 160, 201-211.
20. Yoshimune, M., Fujiwara, I., Suda, H., & Haraya, K. (2005). Novel Carbon Molecular Sieve Membranes Derived from Poly(phenylene oxide) and Its Derivatives for Gas Separation. Chemistry Letters, 34(7), 958-959.
21. Tanco, M., Tanaka, D., Rodrigues, S., Texeira, M., & Mendes, A. (2015). Composite-alumina- carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: Preparation, characterization and gas permeation studies. International Journal of Hydrogen Energy, 40, 5653-5663.
22. Yun, S. & Oyama, T. (2011). Correlations in palladium membranes for hydrogen separation: A review, Journal of Membrane Science, 375, 28-45.
23. Wang, S., Zeng, M., & Wang, Z. (1996). Carbon membranes for gas separation. Separation Science and Technology, 31(16), 2299-2306.
24. Zhang, B., Dang, X., Wu, Y., & Liu, H. (2014). Structure and gas permeation of nanoporous carbon membranes based on RF resin/F-127 with variable catalysts. J. Mater. Res., 29(23), 2881- 2890.
25. Shusen, W., Meiyun, Z., & Zhizhong, W. (1996). Asymmetric molecular sieve carbon membranes. Journal of Membrane Science, 109, 267-270.
26. Campo, M., Magalhaes, F., & Mendes, A. (2010). Carbon molecular sieve membranes from cellophane paper. Journal of Membrane Science, 350, 180-188.
27. Tanco, M., Tanaka, D., & Mendes, A. (2015). Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part II: Effect of the carbonization temperature on the gas permeation properties. International Journal of Hydrogen Energy, 40, 3485-3496.
28. Kita, H., Yoshiko, M., Tanaka, K., & Okamoto, K. (1997). Gas permselectivity of carbonized polypyrrolone membrane. Chemical Communication, 1051-1052.
29. Rao, M., & Sircar, S. (1993). Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. Journal of Membrane Science, 85, 253-264.
30. Suda, H., & Haraya, K. (1997). Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide. The Journal of Physical Chemistry B, 101, 3988- 3994.
31. Kita, H., Yoshiko, M., Tanaka, K., & Okamoto, K. (1997). Gas permselectivity of carbonized polypyrrolone membrane. Chemical Communication, 1051-1052.
32. Shiflett, M., & Foley, H. (1999). Ultrasonic deposition of high-selectivity nanoporous carbon membranes. Science, 285, 1902-1905.
33. Hosseini, S., & Chung, T. (2009). Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. Journal of Membrane Science, 328, 174-185.
34. Zhang, B., Shen, G., Wu, Y., Wang, T., Qiu, J., Xu, T., & Fu, C. (2009). Preparation and characterization of carbon membranes derived from poly(phthalazinone ether sulfone) for gas separation. Industrial and Engineering Chemistry Research, 2886-2890, 48.
35. Tseng, H., Shiu, P., & Lin, Y. (2011). Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation. Internation Journal of Hydrogen Energy, 36, 15352-15363.

36. Itta, A., & Tseng, H. (2011). Hydrogen separation performance of CMS membranes derived from the imide-functional group of two similar types of precursors. International Journal of Hydrogen Energy, 36, 8645-8657.
37. Itta, A., Tseng, H., & Wey, M. (2011). Fabrication and characterization of PPO/PVP blend carbon molecular sieve membranes for H2/N2 and H2/CH4 separation. Journal of Membrane Science, 372, 387-395.
38. Briceno, K., Montane, D., Garcia-Valls, R., Iulianelli, A., & Basile, A. (2012). Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation. Journal of Membrane Science, 415-416, 288-297.
39. Tseng, H., Shih, K., Shiu, P., & Wey, M. (2012). Influence of support structure on the permeation behavior of polyetherimide-derived carbon molecular sieve composite membrane. Journal of Membrane Science, 405-406, 250-260.
40. Tseng, H., Itta, A., Weng, T., & Li, Y. (2013). SBA-15/CMS composite membrane for H2 purification and CO2 capture: Effect of pore size, pore volume, and loading weight on separation performance. Microporous and Mesoporous Materials, 180, 270-279.
41. Teixeira, M., Rodrigues, S., Campo, M., Tanaka, D., Tanco, M., Madeira, L., . . . Mendes, A. (2014). Boehmite-phenolic resincarbonmolecularsieve membranes— Permeationandadsorptionstudies. Chemical Engineering Research and Design, 92, 2668-2680.
42. Rodrigues, S., Whitley, R., & Mendes, A. (2014). Preparation and characterization of carbon molecular sieve membranes based on resorcinol-formaldehyde resin. Journal of Membrane Science, 459, 207-216.
43. Li, L., Song, C., Jiang, H., Qiu, J., & Wang, T. (2014). Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer. Journal of Membrane Science, 450, 469-477.
44. Li, L., Wang, C., Wang, N., Cao, Y., & Wang, T. (2015). The preparation and gas separation properties of zeolite/carbon hybrid membranes. Journal of Materials Science, 50, 2561-2570.
45. Zhang, B., Wu, Y., Lu, Y., Wang, T., Jian, X., & Qiu, J. (2015). Preparation and characterization of carbon and carbon/zeolite membranes from ODPA-ODA type polyetherimide. Journal of Membrane Science, 474, 114-121.
46. Robeson, L. (2008). The upper bound revisited. Journal of Membrane Science, 320, 390-400.
47. Go, Y., Lee, J. H., Shamsudin, I. K., Kim, J., & Othman, M. R. (2016). Microporous ZIF-7 membranes prepared by in-situ growth method for hydrogen separation. International Journal of Hydrogen Energy, 41(24), 10366-10373.
48. Saufi, S. M., & Ismail, A. F. (2004). Fabrication of carbon membranes for gas separation––a review. Carbon, 42(2), 241-259.
49. He, X., & Hagg, M. B. (2011). Optimization of carbonization process for preparation of high performance hollow fiber carbon membranes. Industrial & Engineering Chemistry Research, 50(13), 8065-8072.
50. Xu, L., Rungta, M., & Koros, W. J. (2011). Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation. Journal of membrane science, 380(1-2), 138- 147.
51. Rivaton, A. (1995). Photochemical and thermal oxidation of poly (2, 6-dimethyl-1, 4-phenylene oxide). Polymer degradation and stability, 49(1), 11-20.
52. Sazali, N., Salleh, W. N. W., Md Nordin, N. A. H., Harun, Z., & Ismail, A. F. (2015). Matrimid‐ based carbon tubular membranes: The effect of the polymer composition. Journal of Applied Polymer Science, 132(33).
53. Li, L., Wang, T., Liu, Q., Cao, Y., & Qiu, J. (2012). A high CO2 permselective mesoporous silica/carbon composite membrane for CO2 separation. Carbon, 50(14), 5186-5195.
54. Zhang, B., Wang, T., Zhang, S., Qiu, J., & Jian, X. (2006). Preparation and characterization of carbon membranes made from poly (phthalazinone ether sulfone ketone). Carbon, 44(13), 2764- 2769.
55. Wei, W., Qin, G., Hu, H., You, L., & Chen, G. (2007). Preparation of supported carbon molecular sieve membrane from novolac phenol–formaldehyde resin. Journal of Membrane Science, 303(1-2), 80-85.
56. Salleh, W. N. W., & Ismail, A. F. (2012). Fabrication and characterization of PEI/PVP‐based carbon hollow fiber membranes for CO2/CH4 and CO2/N2 separation. AIChE Journal, 58(10), 3167-3175.
57. Lua, A. C., & Su, J. (2006). Effects of carbonisation on pore evolution and gas permeation properties of carbon membranes from Kapton® polyimide. Carbon, 44(14), 2964-2972.
58. Fu, S., Sanders, E. S., Kulkarni, S. S., & Koros, W. J. (2015). Carbon molecular sieve membrane structure–property relationships for four novel 6FDA based polyimide precursors. Journal of Membrane Science, 487, 60-73.
59. Foley, H. C. (1995). Carbogenic molecular sieves: synthesis, properties and applications. Microporous Materials, 4(6), 407-433.
60. Salleh, W. N. W., Ismail, A. F., Matsuura, T., & Abdullah, M. S. (2011). Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review. Separation & Purification Reviews, 40(4), 261-311.
Published
2021-01-15
How to Cite
M. A. T., Jaya, et al. Robeson’s Upperbound-Oriented Enhancement of Performance of Hollow Fiber Carbon Membrane for H2/N2 Ideal Separation. International Journal of Advanced Research in Engineering Innovation, [S.l.], v. 2, n. 4, p. 45-59, jan. 2021. Available at: <https://myjms.mohe.gov.my/index.php/ijarei/article/view/11890>. Date accessed: 20 sep. 2024.
Section
Articles