Retail Investor Attention Impact on Indonesia Stock Market Return

  • William Kenneth
  • Zaafri A. Husodo

Abstract

This study investigates the relationship between investor attention, measured by Google Search Volume (GSV), and stock market return in Indonesia from April 2020 to February 2021. During this period, the Indonesia stock market was recovering from March 2020 crash, and at the same time, there is a massive increase in the number of retail investors in Indonesia. We observed 57 stocks during the 219 trading days using Panel Regression method with Newey West Estimator. Using five different time lags, we found that GSV significantly has a negative impact on stock return for lag 10, lag 15, and lag 20 days. This finding is broadly consistent with the previous researcher (Bijl et al., 2016), which found a negative relationship between lag GSV and stock return post-2008 market crisis.

References

Adachi, Y., Masuda, M., & Takeda, F. (2017). Google search intensity and its relationship to the returns and liquidity of Japanese startup stocks. Pacific-Basin Finance Journal, 46, 243-257. doi:10.1016/j.pacfin.2017.09.009
Barber, B. M., & Odean, T. (2012). All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors. The Handbook of News Analytics in Finance, 173-210. doi:10.1002/9781118467411.ch7
Bijl, L., Kringhaug, G., Molnár, P., & Sandvik, E. (2016). Google searches and stock returns. International Review of Financial Analysis, 45, 150-156. doi:10.1016/j.irfa.2016.03.015
Choi, H., & Varian, H. (2012). Predicting the present with google trends. Economic Record, 88, 2-9. doi:10.1111/j.1475-4932.2012.00809.x
Huang, C., Yang, X., Yang, X., & Sheng, H. (2014). An empirical study of the effect of investor sentiment on returns of different industries. Mathematical Problems in Engineering, 2014, 1-11. doi:10.1155/2014/545723
Corsi, F. (2008). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7(2), 174-196. doi:10.1093/jjfinec/nbp001
Da, Z., Eengelberg, J., & Gao, P. (2011). In search of attention. The Journal of Finance, 66(5), 1461-1499. doi:10.1111/j.1540-6261.2011.01679.x
Fama, E. F. (1976). Efficient Capital Markets: Reply. The Journal of Finance, 31(1), 143. doi:10.2307/2326404
Fang, L., & Peress, J. (2009). Media coverage and the cross-section of stock returns. The Journal of Finance, 64(5), 2023-2052. doi:10.1111/j.1540-6261.2009.01493.x
Google trends. (n.d.). Retrieved July 03, 2021, from https://trends.google.com/trends
Grullon, G., & Michaely, R. (2004). The information content of share Repurchase Programs. The Journal of Finance, 59(2), 651-680. doi:10.1111/j.1540-6261.2004.00645.x
Kahneman, D. & Avishai H. (2017). “Perceptual Organization and Attention.” Perceptual Organization, pp. 181–211., doi:10.4324/9781315512372-7.
Joseph Kissan; M. Babajide Wintoki and Zelin Zhang, (2011), Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search, International Journal of Forecasting, 27, (4), 1116-1127
Merton, R. C. (1987). "A Simple Model of Capital Market Equilibrium with Incomplete Information." The Journal of Finance 42.3
Parkinson, M. (1980). The Extreme Value Method for Estimating the Variance of the Rate of Return. The Journal of Business, 53(1), 61-65. Retrieved July 3, 2021, from http://www.jstor.org/stable/2352357
Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying trading behavior in financial markets using google trends. Scientific Reports, 3(1). doi:10.1038/srep01684
Raubenheimer, J. E. (2021). Google trends extraction tool for Google Trends extended for health data. Software Impacts, 8, 100060. doi:10.1016/j.simpa.2021.100060
Samaras, L., García-Barriocanal, E., & Sicilia, M. (2020). Comparing social media and Google to detect and predict severe EPIDEMICS. Scientific Reports, 10(1). doi:10.1038/s41598-020-61686-9
Schroff, S., & Stephan M. (2013). Retail Investor Information Demand - Speculating and Investing in Structured Products. doi:10.2139/ssrn.2306211.
Simon, H.A. (1955). "A Behavioral Model of Rational Choice." The Quarterly Journal of Economics 69.1.
Statman, M. (1999). Behaviorial Finance: Past Battles and Future Engagements. Financial Analysts Journal, 55(6), 18-27. Retrieved July 3, 2021, from http://www.jstor.org/stable/4480206
Takeda, Fumiko & Hiroaki Yamazaki, 2006. "Stock Price Reactions to Public TV Programs on Listed Japanese Companies," Economics Bulletin, AccessEcon, vol. 13(7), pages 1-7.
Takeda, F. & Wakao, T. (2014). Google Search Intensity and Its Relationship with Returns and Trading Volume of Japanese Stocks. Pacific-Basin Finance Journal 27: 1-18. doi: http://dx.doi.org/10.2139/ssrn.2332495
Tetlock, P. C. (2007). "Giving Content to Investor Sentiment: The Role of Media in the Stock Market." The Journal of Finance 62.3: 1139-168.
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131. https://doi.org/10.1126/science.185.4157.1124
Varian, H. (2006). “The Economics of Internet Search.” 'Angelo Costa' Lectures Series, SIPI Spa, issue Lect. VII.
Zaleskiewicz, T. (2006). Behavioural Finance. Handbook Of Contemporary Behavioral Economics: Foundations And Developments (pp.706-728). M.E. Sharpe Publishers.
Published
2021-09-01
How to Cite
KENNETH, William; A. HUSODO, Zaafri. Retail Investor Attention Impact on Indonesia Stock Market Return. International Journal of Advanced Research in Economics and Finance, [S.l.], v. 3, n. 3, p. 72-79, sep. 2021. ISSN 2682-812X. Available at: <https://myjms.mohe.gov.my/index.php/ijaref/article/view/15087>. Date accessed: 19 oct. 2021.
Section
Articles