Advancement of aliphatic polycarbonates with nanoclay addition: An overview

  • Nur Azrini Ramlee Faculty of Chemical Engineering, Universiti Teknologi MARA, Selangor, Malaysia
  • Nazirul Faiz Mat Noh Faculty of Chemical Engineering, Universiti Teknologi MARA, Selangor, Malaysia

Abstract

Aliphatic polycarbonates are considered as newly developed biodegradable polymer, which results from a sustainable copolymerization of epoxides and carbon dioxide (CO2) process. These aliphatic carbonates have weak properties in terms of thermal stability and mechanical properties, due to its carbon structure flexibility, hence causing limitation to its applications. Up to date, studies on aliphatic polycarbonates are progressively conducted to maximize its opportunity as an alternative nanocomposite. This review was carried out to provide insights on the progression in producing aliphatic polycarbonates by incorporating various type of fillers to enhance physicochemical, thermal and mechanical properties of aliphatic polycarbonates. The results revealed that a blend of aliphatic polycarbonates/clay nanocomposites with low clay content up to 10 wt.% displayed improved glass transition temperature and thermal degradation in comparison with the pure one. The improved thermal stability was due to the nanoparticle’s dispersion into matrix of aliphatic polycarbonates. The mechanical properties such as Young’s Modulus and tensile strength of aliphatic polycarbonates were also improved with addition of nanoclay. The improvement of thermal and mechanical properties of aliphatic polycarbonates at low content of nanoclay proves that the addition of nanoclay into polymer matrix is a promising technique to design the properties of aliphatic polycarbonates particularly for the coating application as water and oxygen barrier film.


 

References

A. P. Hasmukh, S. S. Rajesh, C. B. Hari, V. J. Raksh, (2006). Nanoclays for Polymer Nanocomposites, Paints, Inks, Greases, Cosmetics Formulations, Drug Delivery, Vehicle and Wastewater Treatment. Bulletin of Materials Science. 29(2). 133.

B. Michel, (2016). Thermoplastics: Economic Overview. Material Selection for Thermoplastic Parts. 77–111.
B. K. Sher, (2009). Synthesis and Characterization of PPC/Organo-Clay Nanohybrid: Influence of Organically Modified Layered Silicates on Thermal and Water Absorption Properties. Membrane Journal. 19(4). 341–347.

C. S. Tan, T. Hsu, (1997). Alternating Copolymerization of Carbon Dioxide and Propylene Oxide with a Rare-Earth-Metal Coordination Catalyst. J Macromol. 30. 3147.

C. Wan, J. Yu, X. Shi, L. Huang, (2006). Preparation of Poly(Propylene Carbonate)/ Organophilic Rectorite Nanocomposites via Direct Melt Intercalation. Trans. Nonferrous Met. Soc. China. 16. 508–511.

D. J. Darensbourg, M. W. Holtcamp, (1995). Catalytic Activity of Zinc(II) Phenoxides which Possess Readily Accessible Coordination Sites. Copolymerization and Terpolymerization of Epoxides and Carbon Dioxide. Macromolecules. 28. 7577.

D. T. Sudhir, J. P. Paul, S. Viktor, G. Andre, (2009). Physical Properties of Aliphatic Polycarbonates Made from CO2 and Epoxides. Journal of Applied Polymer Science. 89. 1163–1176.

G. Chen, B. Li, J. Zhao, L. Gan, S. Wang, M. Xiao, Y. Meng, (2013). Preparation and Properties of Compatible Poly (propylene carbonate)/ Poly(butylene succinate) Blends, Polym. Mater. Sci. Eng. 29. 148–151.

G. Chen, Y. Wang, S. Wang, M. Xiao, Y. Meng, (2013). Orientation Microstructure and Properties of Poly(propylene carbonate)/Poly(butylene succinate) Blend Films. J. Appl. Polym. Sci. 128. 390–399.
Global Energy & CO2 Status Report 2017, 2018–03. https://www.iea.org/geco/.

H. S. Georg, N. Fritz, A. Murat, B. David, B. Siegfried, M. Irene, M. Andreas, K. Maryelle, T. Kjell, (2001). Poly(ethylene carbonate)s, Part II: Degradation Mechanisms and Parenteral Delivery of Bioactive Agents. Journal of Controlled Release. 76. 209–225.

J. Jiao, S. Wang, M. Xiao, Y. Xu, Y. Meng, (2007). Processability, Property, and Morphology of Biodegradable Blends of Poly(propylene carbonate) and Poly(ethylene-co-vinyl alcohol). Polym. Eng. Sci. 47. 174–180.

J. Kong, Z. Lee, C. Zenwen, H. Changyu, D. Lisong, (2007). The Excellent Gas Barrier Properties and Unique Mechanical Properties of Poly(propylene carbonate)/Organo-Montmorillonite Nanocomposites. Polymer Bulletin. 74. 5065–5082.

J. M. Lagaron, E. Gimenez, R. Gavara, J. J. Saura, (2001). Study of The Influence of Water Sorption in Pure Components and Binary Blends of High Barrier Ethylene Vinyl Alcohol Copolymer and Amorphous Polyamide and Containing Ionomer. Polymer. 42(23). 9531–9540.

J. Xu, R. K. Y. Li, Y. Xu, L. Li, Y. Meng, (2005). Preparation of Poly(propylene carbonate)/Organo-vermiculite Nanocomposites via Direct Melt Intercalation. Eur. Polym. J. 41. 881–888.

J. Xu, R. K. Y. Li, Y. Meng, Y. Mai, (2006). Biodegradable Poly(propylene carbonate)/ Montmorillonite Nanocomposites Prepared by Direct Melt Intercalation. Mater. Res. Bull. 41. 244–252.

K. Kento, M. Joh, Y. Tominaga, (2016). Correlation between Solvation Structure and Ion-Conductive Behaviour of Concentrated Poly(ethylene carbonate)-Based Electrolytes. The Journal of Physical Chemistry C. 120(23). 12385–12391.

L. Zhenguang, M. Hidetoshi, Y. Tominaga, (2018). Composite Poly(Ethylene Carbonate) Electrolytes with Electrospun Silica Nanofibers. Polym Adv Technol. 29. 820–824.

M. Acemoglu, F. Nimmerfall, S. Bantle, H. Stoll, (1997). Poly(ethylene carbonate)s, Part I: Syntheses and Structural Effects on Biodegradation. Journal of Controlled Release. 49. 263–276.

M. Kotal, K. B. Anil, (2015). Polymer Nanocomposites from Modified Clays: Recent Advances and Challenges. Progress in Polymer Science. 51. 127–187.

M. Oliveira, A. V. Machado, (2013). Preparation of Polymer-based Nanocomposites by Different Routes. Material Science, 1–22.

M. Pang, J. Qiao, J. Jiao, S. Wang, M. Xiao, Y. Meng, (2008). Miscibility and Properties of Completely Biodegradable Blends of Poly(propylene carbonate) and Poly(butylene succinate). J. Appl. Polym. Sci. 107. 2854–2860.

M. S. Super, E. Beckman, (1997). Copolymerization Involving Carbon Dioxide : The Use of CO2 as a Monomer Trends. J Polym Sci. 5. 236.

M. Taherimehr, P. P. Pescarmona, (2014). Green Polycarbonates Prepared by the Copolymerization of CO2 with Epoxides, J. Appl. Polym. Sci. 21. 131.

N. A. Ramlee, Y. Tominaga, (2018). Preparation and Characterization of Poly(ethylene carbonate)/Poly(lactic acid) Blends. J. Polym. Res. 25. 54.

N. A. Ramlee, Y. Tominaga, (2019). Mechanical and Degradation Properties in Alkaline Solution of Poly(ethylene carbonate)/Poly(lactic acid) Blends. Polymer (Guildf). 166. 44–49.

N. A. Ramlee, Y. Tominaga, (2019). Structural and Physicochemical Properties of Melt-Quenched Poly(ethylene carbonate)/pPly(lactic acid) Blends. Polym. Degrad. Stab. 163. 35–42.

O. Phillips, J. Schwart, P. Kohl, (2016). Thermal Decomposition of Poly(propylene carbonate): End-Capping, Additives, and Solvent Effects. Polymer Degradation and Stability. 125. 129–139.

P. Ohlendorf, A. Ruyack, A. Leonardi, C. Shi, C. Cuppoletti, I. Bruce, A. Lal, K. Christopher, (2017). Transient Fiber Mats of Electrospun Poly(Propylene Carbonate) Composites with Remarkable Mechanical Strength. ACS Appl. Mater. Interfaces. 9. 25495−25505.

Q. Zhao, M. Xiao, S. Wang, J. Ruan, Y. Meng, (2011). Preparation and Properties of Poly(propylene carbonate)/Poly(lactic acid) Blend with Diisocyanate as Compatibilizer in Melt Process. Polym. Mater. Sci. Eng. 27. 152–155.

S. Cui, J. Borgemenke, Z. Liu, Y. Li, (2019). Recent Advances of “Soft” Bio-Polycarbonate Plastics from Carbon Dioxide and Renewable Bio-feedstocks via Straightforward and Innovative Routes. Journal of CO₂ Utilization. 34. 40–52.

S. Inoue, H. Koinuma, T. Tsurata, (1969). Copolymerization of Carbon Dioxide and Epoxide. J Polym Sci Polym Lett Ed. 7. 287.

S. Inoue, H. Koinuma, Tsuruta, (1969). Copolymerization of Carbon Dioxide and Epoxide with Organometallic Compounds. Die Makromolekulare Chemie. 130. 210–220.

S. Zeng, S. Wang, M. Xiao, D. Han, Y. Meng, (2011). Preparation and Properties of Biodegradable Blend Containing Poly(propylene carbonate) and Starch Acetate with Different Degrees of Substitution. Carbohydr. Polym. 86. 1260–1265.

X. Ge, X. Li, Q. Zhu, L. Li, Y. Meng, (2004). Preparation and Properties of Biodegradable Poly(propylene carbonate)/Starch Composites. Polym. Eng. Sci. 44. 2134–2140.

X. Ge, Y. Xu, Y. Meng, R. K. Y. Li, (2005). Thermal and Mechanical Properties of Biodegradable Composites of Poly(propylene carbonate) and Starches Poly(methyl acrylate) Graft Copolymer. Compos. Sci. Technol. 65. 2219–2225.

X. L. Lu, Q. Zhu, Y. Z. Meng, (2005). Kinetic Analysis of Thermal Decomposition of Poly(propylene carbonate). Polym Degrad Stab. 89. 282–8.

X. Li, S. Tjong, Y. Meng, Q. Zhu, (2003). Fabrication and Properties of Poly(propylene carbonate)/Calcium Carbonate Composites, J. Polym. Sci., Polym. Phys. 41. 1806–1813.

X. Lu, F. Du, X. Ge, M. Xiao, Y. Meng, (2006). Biodegradability and Thermal Stability of Poly(propylene carbonate)/Starch Composites, J. Biomed. Mater. Res. A. 2006. 77. 653–658.

X. Shi, Z. Gan, (2007). Preparation and Characterization of Poly(propylene carbonate)/ Montmorillonite Nanocomposites by Solution Intercalation. European Polymer Journal. 43. 4852–4858.

X. Wang, F. Du, J. Jiao, Y. Meng, R.K. Li, (2007). Preparation and Properties of Biodegradable Polymeric Blends from Poly(propylene carbonate) and Poly(ethylene-co-vinyl alcohol), J. Biomed. Mater. Res. B Appl. Biomater. 8. 373–379.

Y. Fukushima, S. Inagaki, (1987). Synthesis of an Intercalated Compound of Montmorillonite and 6-polyamide. J. Inclusion Phenom. 5. 473.

Y. Meijun, M. Fang, D. Hua, N. Nanying, W. Ke, F. Qiang, (2011). Improved Thermal Stability and Mechanical Properties of Poly(propylene carbonate) by Reactive Blending with Maleic Anhydride. Journal of Applied Polymer Science. 120. 3565–3573.

Y. Meng, J. Wu, M. Xiao, S. Wang, H. He, D. Han, (2010). Progress and Application of Biodegradable Plastic Derived from Copolymerization of Carbon Dioxide with Epoxides. Petrochem. Technol. 39 241–248.

Y. Sasanuma, Y. Takahashi, (2017). Structure−Property Relationships of Poly (ethylene carbonate) and Poly(propylene carbonate). ACS Omega. 2(8). 4808–4819.

Y. Shuxian, W. Shuanjin, L. Limiao, X. Min, M. Yuezhong, (2019). CO2 Derived Biodegradable Biodegradable Polycarbonates: Synthesis, Modification and Applications. Advanced Industrial and Engineering Polymer Research. 2. 143–160.

Y. Sugimoto, S. Inoue, (2004). Copolymerization of Carbon Dioxide and Epoxide. J. Polym. Sci. Part A: Polym. Chem. 42. 5561–5573.

Y. Tominaga, Y. Kinno, K. Kimura, (2019). An End-Capped Poly(ethylene carbonate)-Based Concentrated Electrolyte for Stable Cyclability of Lithium Battery. Electrochimica. 302. 286–290.

Z. Zhang, H. J. Lee, H. Seung, B. S. Heo, C. Pittman, (2008). Morphology, Thermal Stability and Rheology of Poly(propylene carbonate)/ Organoclay Nanocomposites with Different Pillaring Agents. Polymer. 49. 2947–2956.

Z. Zhang, Q. Shi, J. Peng, J. Song, Q. Chen, J. Yang, Y. Gong, R. Ji, X. He, and J. H. Lee, (2006). Partial Delamination of the Organo-Montmorillonite with Surfactant Containing Hydroxyl Groups in Maleated Poly(propylene carbonate). Polymer. 47. 8548.
Published
2020-12-31
How to Cite
RAMLEE, Nur Azrini; MAT NOH, Nazirul Faiz. Advancement of aliphatic polycarbonates with nanoclay addition: An overview. Malaysian Journal of Chemical Engineering and Technology (MJCET), [S.l.], v. 3, n. 2, p. 36-44, dec. 2020. ISSN 2682-8588. Available at: <http://myjms.mohe.gov.my/index.php/mjcet/article/view/11258>. Date accessed: 20 apr. 2021. doi: https://doi.org/10.24191/mjcet.v3i2.11258.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.